DESIGN OF THE BNL PROTON DRIVER for SUPER NEUTRINO BEAM

W. T. Weng

Brookhaven National Laboratory

NBI2003, KEK

November 7-11, 2003

OUTLINE

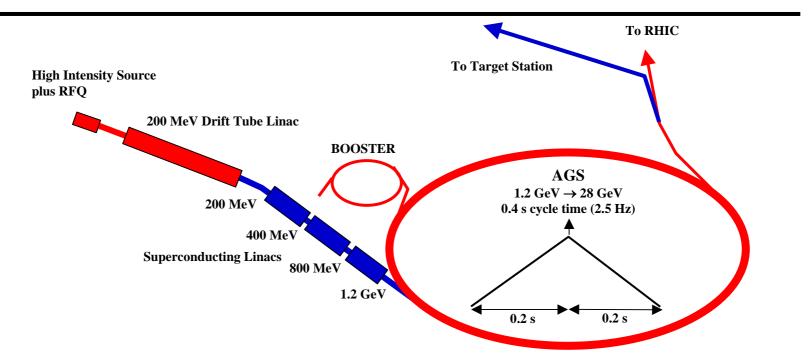
AGS Upgrade (1MW):

Beam loss considerations

1.2 GeV Superconducting Linac

H⁻ injection study

2.5 Hz AGS power supply and rf system


Target and Horn system

AGS Upgrade (4MW)

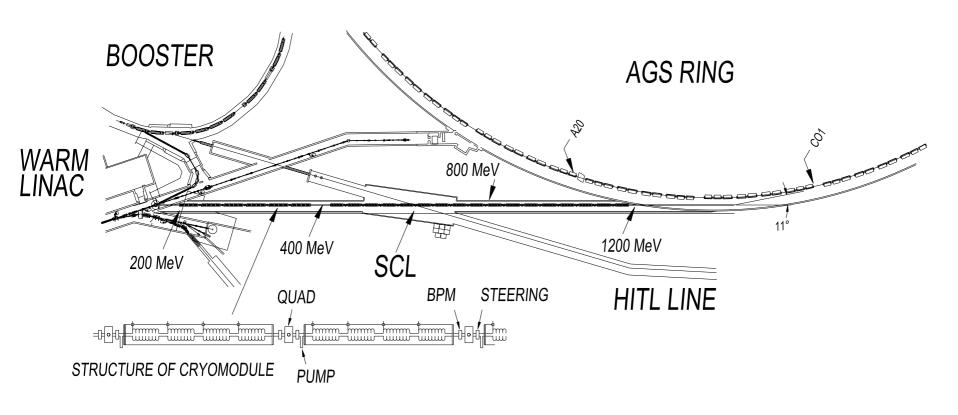
Conclusion

AGS Upgrade to 1 MW

- 1.2 GeV superconducting linac extension for direct injection of $\sim 1 \times 10^{14}$ protons low beam loss at injection; high repetition rate possible further upgrade to 1.5 GeV and 2×10^{14} protons per pulse possible (x 2)
- 2.5 Hz AGS repetition rate
 triple existing main magnet power supply and magnet current feeds
 double rf power and accelerating gradient
 further upgrade to 5 Hz possible (x 2)

AGS Proton Driver Parameters

	present AGS	1 MW AGS	4 MW AGS	J-PARC
Total beam power [MW]	0.14	1.00	4.00	0.75
Beam energy [GeV]	24	28	28	50
Average current [µA]	6	36	144	15
Cycle time [s]	2	0.4	0.2	3.4
No. of protons per fill	0.7×10^{14}	0.9×10^{14}	1.8×10^{14}	3.3×10^{14}
Average circulating current [A]	4.2	5.0	10	12
No. of bunches at extraction	6	24	24	8
No. of protons per bunch	1×10^{13}	0.4×10^{13}	0.8×10^{13}	4×10^{13}
No. of protons per 10 ⁷ sec.	3.5×10^{20}	23×10^{20}	90×10^{20}	10×10^{20}



1.2 GeV Superconducting Linac

Beam energy	$0.2 \rightarrow 0.4 \text{ GeV}$	$0.4 \rightarrow 0.8 \text{ GeV}$	$0.8 \rightarrow 1.2 \text{ GeV}$
Rf frequency	805 MHz	1610 MHz	1610 MHz
Accelerating gradient	10.8 MeV/m	23.5 MeV/m	23.4 MeV/m
Length	37.8 m	41.4 m	38.3 m
Beam power, linac exit	17 kW	34 kW	50 kW

Layout of the 1.2 GeV SCL

Beam Loss at H Injection Energy

	AGS Booster	PSR LANL	SNS	1 MW AGS
Beam power, Linac exit, kW	3	80	1000	50
Kinetic Energy, MeV	200	800	1000	1200
Number of Protons N_P , 10^{12}	15	31	100	100
Vertical Acceptance A, π μm	89	140	480	55
$eta^2 \gamma^3$	0.57	4.50	6.75	9.56
$N_P / (\beta^2 \gamma^3 A), 10^{12} / \pi \mu m$	0.296	0.049	0.031	0.190
Total Beam Losses, %	5	0.3	0.1	3
Total Loss Power, W	150	240	1000	1440
Circumference, m	202	90	248	807
Loss Power per Meter, W/m	0.8	2.7	4.0	1.8

AGS Injection Simulation

Injection parameters:

Injection turns	360
-----------------	-----

Repetition rate 2.5 Hz

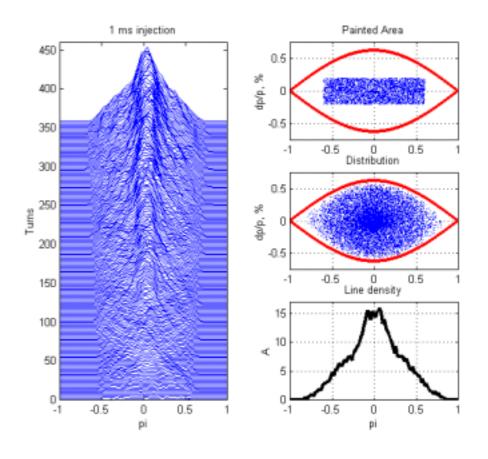
Pulse length 1.08 ms

Chopping rate 0.65

Linac average/peak current 20 / 30 mA

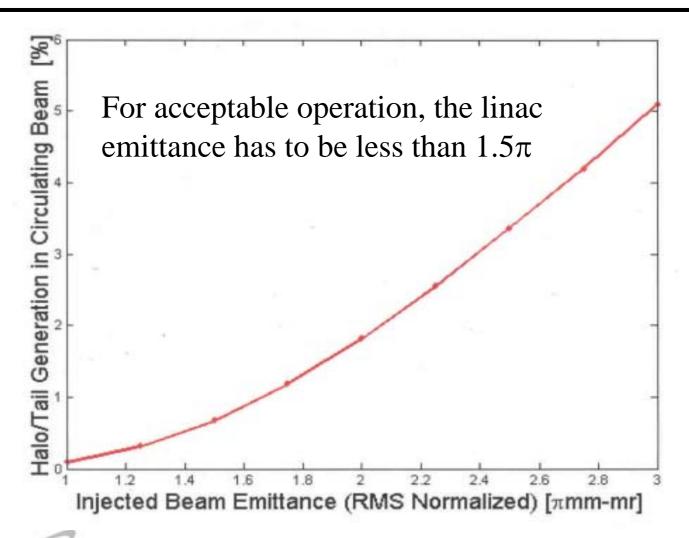
Momentum spread $\pm 0.15 \%$

Inj. beam emittance (95 %) 12 $\pi \mu m$


RF voltage 450 kV

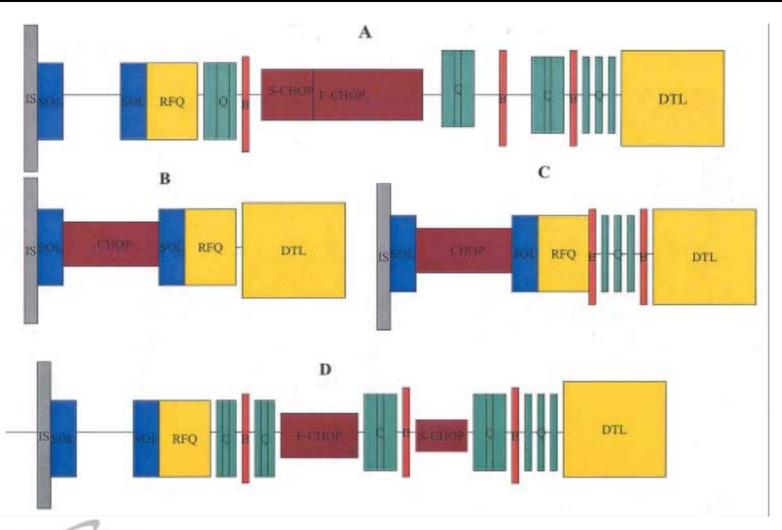
Bunch length 85 ns

Longitudinal emittance 1.2 eVs


Momentum spread $\pm 0.48 \%$

Circ. beam emittance (95 %) 100 $\pi \mu m$

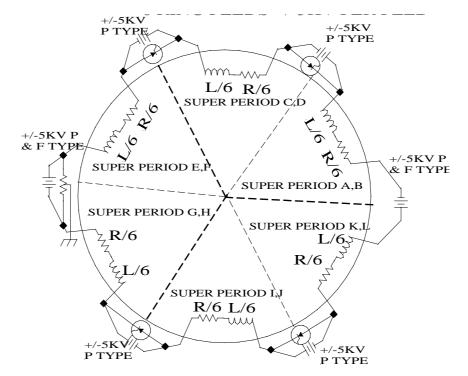
Halo in AGS as Function of Linac Emittance

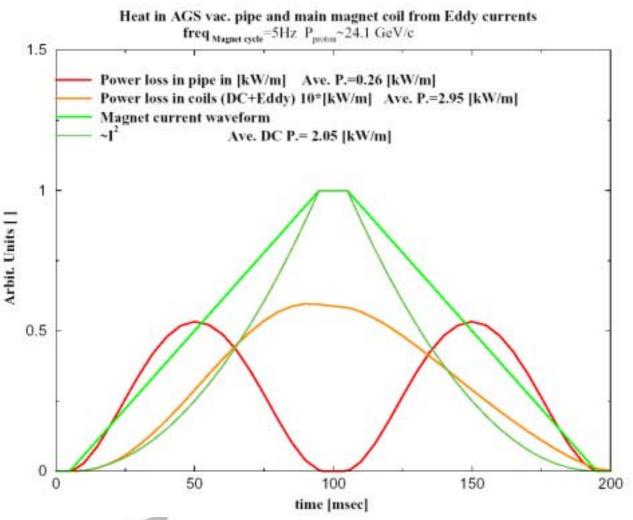


Linac Emittance Improvement

750 keV Line Upgrade Options Emittance at source 0.4 pi mm mr (rms.nor)

		4 pr mm m (m)	ı <i>*</i>
Line Configuration	Transmission	RMS Emittance growth (x,y,z)	<u>Comments</u>
(A)Present (RFQ, 12 quads,3	~70 %	450%, 500%, 300%	-7 meter long
bunchers, fast & slow chopper)			
(\mathbf{B}) RFQ + DTL	100 %	64%, 40%, 64%	-Requires new chopping in LEBT
(no 750 keV line)			-0.07 long
(C)RFQ +3 quads +2 Bunchers	100 %	16%, 0%, 74%	-Requires new chopping in LEBT -0.5 meter
			-0.5 meter
(D)Present, with 2 modified	98%	31%, 11 %, 222%	-5 meter long
triplet, and splitting fast & slow	98%	31%, 11 %, 222%	-5 meter long
choppers			
ROOKHAVEN			
TIONAL LABORATORY			


Options Layout


New AGS Main Magnet Power Supply

		presently:
 Repetition rate 	2.5 Hz	1 Hz
 Peak power 	110 MW	50 MW
 Average power 	4 MW	4 MW
 Peak current 	5 kA	5 kA
 Peak total voltage 	$\pm 25 \text{ kV}$	$\pm 10 \text{ kV}$
 Number of power converters / feeds 	6	2

Eddy Current Losses in AGS Magnets

For 2.5 (5.0) Hz:

In pipe: 65 (260) W/m

In coil: 225 (900) W/m

AGS RF System Upgrade

Use present cavities with upgraded power supplies (two 300 kW tetrodes/cavity)

~ 9 MHz

24

2 MW

18 mT

 Rf voltage/tu

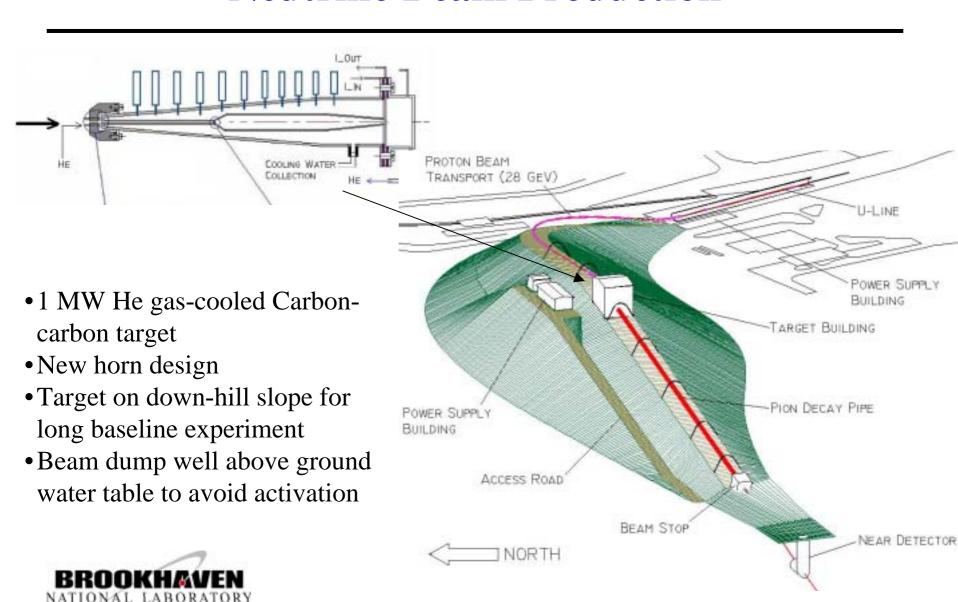
• harmonic number

• Rf frequency

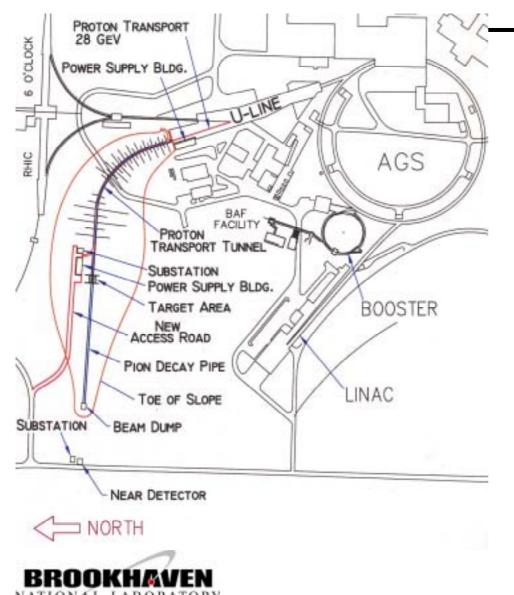
• Rf peak power

• Rf magnetic field

presently: $0.8 \,\mathrm{MV}$

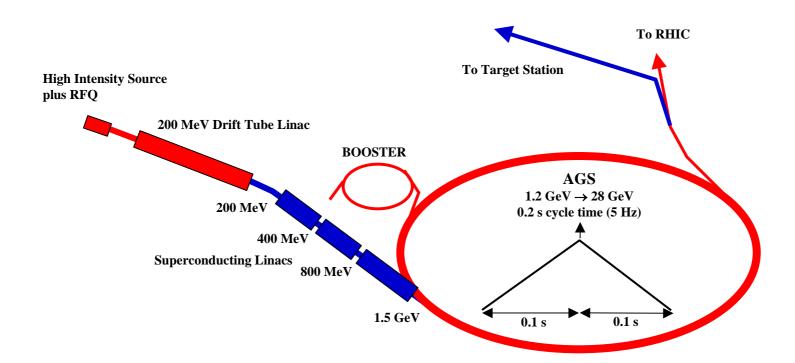

0.4 MV

6 - 12


3 - 4.5 MHz

Neutrino Beam Production

Super Neutrino Beam Geographical Layout


- BNL can provide a 1 MW capable Super Neutrino Beam for \$104M FY03 (TEC) dollars
- the neutrino beam can aim at any site in the western U.S. the Homestake Mine is shown here)
- there will be no environmental issues if the beam is produced atop the hill illustrated here and the beam dumped well above the local water table
- construction of the Super Neutrino Beam is essentially de-coupled from AGS and RHIC operations

Path Towards 4 MW

	Upgrade I	Upgrade II	Upgrade III
Linac intensity/pulse	1.0 × 10 ¹⁴	2.0×10^{14}	2.0×10^{14}
Linac rep. rate	2.5 Hz	2.5 Hz	5.0 Hz
Linac extraction energy	1.2 GeV	1.5 GeV	1.5 GeV
$\beta^2\gamma^3$	9.6	14.9	14.9
Beam power	54 kW	144 kW	288 kW
AGS intensity/pulse	0.9×10^{14}	1.8×10^{14} 2.5 Hz 4 MW 0.8 MV 28 GeV 2 MW	1.8 × 10 ¹⁴
AGS rep. rate	2.5 Hz		5.0 Hz
Rf peak power	2 MW		8 MW
Rf gap volts/turn	0.8 MV		1.5 MV
AGS extraction energy	28 GeV		28 GeV
Beam power	1 MW		4 MW



4 MW AGS Proton Driver Layout

AGS after Burner

Additional Work Planned

- 1. Reduction of the Linac Emittance
- 2. Cryogenic System Design
- 3. LLRF Tuning and Feedback of SCL
- 4. Transition Crossing in the AGS
- 5. Beam Collimation
- 6. Optimization of the Target and Horn System
- 7. Improvement of Upgrade Path

Conclusions

- 1. The feasibility has been demonstrated for a 1MW upgrade for the AGS
- 2. It is possible to further upgrade the AGS to 4MW

Such a high power proton driver is essential for very long base line neutrino experiment and also for the neutrino factory.

