11/7/2003@KEK

Quench Stability against Beam-loss in Superconducting Magnets at the 50 GeV Proton Beam Line for the J-PARC Neutrino Experiment

Yosuke Iwamoto, Nobuhiro Kimura, Toru Ogitsu, Hirokatsu Ohhata, Atsuko Ichikawa, Tatsushi Nakamoto and Akira Yamamoto, *KEK*

Kenji Tanabe, University of Tokyo

Contents

(Acceptable beam loss in view of shielding and maintenance)

Calculate heat load for a 10 W/point beam loss in the cable by MARS code

Heat Load Simulation using MARS code

Heat load will be up to 20 kJ/m³/pulse.

Heating of 0-40 kJ/m³/pulse was used in experiment and the quench simulation.

Contents

Experiment

overview

Cross section of the cable

Experimental result

28 kJ/m³/pulse heat load.0.46 K temperature rise.

Temp. rise is proportional to heat load.

Contents

Quench Stability Simulation

Heat balance equation

$$A\frac{d}{dx}\left(k(T)\frac{dT}{dx}\right) - Pq_s + gA = AC_p(T)\frac{dT}{dt}$$

A: the overall cross section

$$K(T)$$
: thermal conductivity of conductor
 P : strand's wetted perimeter
 q_s : heat transfer to SHe
 g : Joule heating in conductor
 $C_p(T)$: volumetric specific heat of conductor

$$q_{\rm s}=h(T-T_{\rm h})$$

Summary

Calculation result by MARS which simulate the actual magnet in the J-PARC neutrino beam line

