JHF Near Neutrino Detectors

T. Nakaya (Kyoto)

1. Introduction

- Precision measurement of $v_{\mu} \rightarrow v_{\chi}$.
 - -Neutrino flux and spectrum (CC-QE).
 - Signal purity (CC-QE events) and the estimation of background (Non CC-QE).

oscillation

Reconstructed Ev (MeV)

Reconstructed Ev (MeV)

- Search for a rare process: $v_{\mu} \rightarrow v_{e}$.
 - \sim 15,000 v_{μ} interactions in 5 years
 - ~10 BG events from $v_{\mu} \rightarrow \pi^0 + X$.
 - ~ 10 BG events from v_e in the beam.
 - Background estimation.

- Muon monitors @ ~140m
- Near detectors @280m
 - Neutrino intensity/direction
 - Neutrino interaction study
- Medium Detector @ ~2km
 - Almost same E_{ν} as SK
 - Water Cherenkov can work
- Far detector (a), 295km
 - Super-K

Near neutrino detector @280m

Function of the detectors

- On-axis (0 degree)
 - Beam direction
 - Beam stability
 - (Spectrum)?
- Off-axis (2~3 degrees)
 - $-v_{\mu}$ and v_{e} neutrino fluxes and the spectra.
 - $-\sqrt{v}$ interaction study (CC-QE, non-QE, π^0 ,)
 - Kaon Contributions
 - (Nuclear dependence (Carbon v.s. Oxygen))?

The detector design is just starting!!

⇒ The design is not fixed yet, and we have many options at this stage.

neutrinos at on-axis

~0.2 events/ton/spill

neutrinos at off-axis

Beam OA2.5deg

~0.06 events/ton/spill

 $0.2^{\circ} \Rightarrow 1$ m at the detector position.

It will be a useful tool to study neutrino interaction.

Physics objects (momentum) at off-axis

A detector Design

Hadron-Production Model dependence on the Far/Near ratio

From MC simulation

The Difference of Far/near ratio is ~1.2±0.6%

(Energy range:0.4~1.2[GeV])

The effect may be small! ← to be checked!

There is a place to be rent for the experiment.

Almost same E_{ν} as SK

Water Cherenkov can be operated (~1 events/kt/spill).

A 2km Detector

Reconstructed Ev (MeV)

4. Summary

- Two types of near neutrino detector at on-axis and off-axis is necessary to monitor the neutrino beam.
- A medium neutrino detector is essential to reduce the beam systematic and test the water Cherenkov reconstruction.