CNGS Target Area Beam Position Monitors

OUTLINE

- 1. Recap of Requirements & Layout
 - 2. Monitor Candidates
 - Secondary Emission Monitor
 - Pick-up in Air
 - 3. Recent Results
 - Response of Pick-ups in air to an intense proton beam

Layout of T40 Beam Diagnostics

Target position monitor fixed to target table & aligned wrt target <

Last two BPMs used to provide position and angle Downstream secondary emission monitor (TBI D) used to

measure multiplicity, asymmetry and secondary beam halo

T40 Beam Diagnostic Requirements

Measurement of Position and Angle of Proton Beam

- Last 2 standard BPMs of the proton beam line
 - ⇒ used to adjust trajectory angle
 - ⇒ 3 times less accuracy required for angle than for position at target
- Final standard BPM of the proton beam line & target BPM
 - ⇒ used to provide position at the target
 - ⇒ setting up performed using final beam line BPM
 - ⇒ aiming at target rods verified & tracked using target BPM
 - \Rightarrow accuracy of measurement \pm 0.2mm in \pm 2mm central region.
 - \Rightarrow accuracy of measurement \pm 0.5mm outside \pm 2mm central region.

error source	rms uncertainty	tolerance
BPM (global accuracy)	0.1 mm &	± 0.2 mm &
	≤± 0.15 mm	≤± 0.3 mm
Alignment	0.10 mm	± 0.2 mm
Total	0.14 mm	≤± 0.35 mm

Choice of Target Station Monitor

Advantages

Disadvantages

TBIU

Upstream secondary emission monitor

- ✓ Intensity & Position
- Measured position depends only on mechanical alignment

- ★ Requires vacuum
 - ⇒ Ti or Be windows
 - ⇒ vacuum pump
- Carbon foils
 - ⇒ ageing not known
- Complicated & heavy

BPKG Position

Position Pick-up

- ✓ Simple construction
- ✓ Radiation resistant
- ? No vacuum (⇒ tests)
- ? Little effect by 2ndary
 particles (⇒ tests)

Chosen as baseline solution

- Position only (+ intensity?)
- Centre depends on electricmechanical offset

Pick-up Choice

Electromagnetic Stripline Coupler Pick-up

Inductive Pick-up

Tests in the CERN-PS Booster

Test Conditions

- Coupler & Button Pick-ups installed in air in front of the Booster Dump
- Beam Type
 - Intensity: ~2.5E13 in 4 bunches of ~6.25E12 per bunch
 - Bunch length: ~230ns
 - Bunch spacing: 572 ns
 - Energy = 1.4 GeV
- Measurements
 - One plane connected
 - Passive Hybrid used to give Sum and Difference signals
 - Data acquired on digital oscilloscope

Stripline Coupler Test Results

Difference Signal

Raw Signal from each electrode (after 30MHz Low Pass Filter)

Stripline Coupler Test Results

Button Pick-up Test Results

Button Pick-up Test Results

Button Pick-up Test Results

Conclusions

Button Electrode Monitor

- ⇒ Sensitive to air ionisation
 - Mechanism for observed signal response still under investigation
- ⇒ Position measurement possible BUT:
 - Signal amplitude will depend non-linearly on beam intensity
 - Signal shape will change depending on the level of ionisation

Stripline Coupler Monitor

- ⇒ Seems less sensitive to air ionisation than button
- ⇒ Position measurement possible BUT:
 - Noisy Signal observed (seems broadband so possibly OK)
 - Tests using 200MHz structure CNGS beam required for final verification
 - Add solenoid or HV for clearing ionised air cloud (?)

Inductive Monitor

⇒ Tests yet to be performed