

### FNAL experience with thin beam windows

NBI03 November 7-11, 2003 FNAL thin beam windows Jim Hylen / FNAL Page 1

#### Issue is:

• Survival of window in high power proton beam

#### Windows described in this talk:

- FNAL Anti-proton production target station experience Information provided by Patrick Hurh and James Morgan
- NuMI prototype-target test window experience
- NuMI Decay Pipe Window calculations

### Titanium window on proton beamline for pbar production

NBI03 November 7-11, 2003 FNAL thin beam windows Jim Hylen / FNAL Page 2



Tri-clad transition ring and weld backup ring

1.5 mil thick Titanium grade 2 foil

#### Run I era:

- beam sigma of 0.4 mm
- 3E12 protons per 1.6 µsec pulse failure every year or two

### Run II era: $(\sim 1 - 2 E18 \text{ protons/month})$

- beam sigma 0.3 mm on window
- increasing from 4E12 to 5.25E12 per pulse failures at 3 months, 1 month, 2 weeks



# Titanium window on proton beamline for pbar production

NBI03 November 7-11, 2003 FNAL thin beam windows Jim Hylen / FNAL Page 3

#### Failure mode:

- Develop vacuum leak (~ 10-7 torr litre /sec)
- See no signs of cracks on the Ti window under a microscope
- See some oxidation (similar to picture later in talk)

#### Failure mechanism not known, but have a supposition

- failure is earlier than probably expected from radiation damage
- peak temperatures are above "alpha/beta transus", so high temperature and rapid cooling could be inducing micro-structural changes, decreasing ductility, making titanium brittle

Ti window was replaced with Be window last year

## Beryllium window on proton beamline for pbar production

NBI03 November 7-11, 2003 FNAL thin beam windows Jim Hylen / FNAL Page 4



in beam for about a year now
0.3 mm RMS spot size
~5e12 protons/pulse

accumulated about 1.7E19 protons with no failures

can see spot where beam heating has caused oxidation

having to clean-up mixed waste
( after a wrench-meets-window
incident NOT at pbar ) induced
installation of a catcher
(pair of Ti windows with air break
where spot size is 4 mm)
which would limit spread of
Be contamination upstream
in case of catastrophic window failure



### Beryllium Window beamline window versus pbar SEM

NBI03 November 7-11, 2003 FNAL thin beam windows Jim Hylen / FNAL Page 5



10 mil thick Be foil in beamline window

Be window used on pbar target SEM is even better test

- has held vacuum longer (for about 7 years )
- with spot size about half that listed for Ti window

(recently about 5e12 at ~0.2 mm rms spot size)



## NuMI Prototype Target Test target can Beryllium window

NBI03 November 7-11, 2003 FNAL thin beam windows Jim Hylen / FNAL Page 6

During the NuMI target prototype test, an even more intense spot was generated for a short period of time

- 10<sup>13</sup> protons/ 10 μsec pulse
- 0.21 mm x 0.16 mm spot size

No visible damage to beryllium window (however target was not run at a high vacuum, only a few milli-torr, so a small leak could have gone unnoticed)





## NuMI Upstream Decay Pipe Window

NBI03 November 7-11, 2003 FNAL thin beam windows Jim Hylen / FNAL Page 7



Steel at large radius

Transition ring

Aluminum thin window 1/16" thick 6061-T6 Al

46 m after target

(Downstream window is 1/4" steel)



### Decay Pipe Window

NBI03 November 7-11, 2003 FNAL thin beam windows Jim Hylen / FNAL Page 8

(accident condition -beam misses target)



#### Accident condition:

4x10<sup>13</sup> proton/spill ~2.5 mm RMS beam spot

Air pressure pre-stresses vacuum window

Beam heating temporarily reduces stress at center of window

### Normal running condition:

 $\sim 4x10^{12}$  proton/spill through target

~11 mm RMS beam spot at window

Expect radiation damage at

 $\sim 4 \times 10^{19} \text{ proton/mm}^2$ 

~ one century of running

### Decay Pipe Window

NBI03 November 7-11, 2003 FNAL thin beam windows Jim Hylen / FNAL Page 9

(accident condition –beam misses target)

Figure 4. Temperature Rise at Center of Thin Head



Temperature rise after many beam cycles is small

(1 pulse / 1.87 seconds)



### **Conclusions**

NBI03 November 7-11, 2003 FNAL thin beam windows Jim Hylen / FNAL Page 10

Performance of Beryllium windows is adequate for NuMI near the target, (4e13 protons/pulse at 1 mm rms spot size) while Titanium would not be

The ES&H aspect of Beryllium has to be dealt with during design (plan for containment and/or clean-up considered)

Aluminum appears adequate for the decay pipe window, where beam conditions are not as harsh