7th Nov. 2003, NBI03@KEK

J-Parc Neutrino Facility Primary Proton Beam Design

A. K. Ichikawa(*KEK*), Y.Iwamoto(KEK) and K.Tanabe(Tokyo) *et.al.*

Boundary Condition for the design

- \succ about 80° bending
- ➢ R~105 m Super conducting magnet
- Beam size in the arc should be as small as possible to prevent quenching
- ➢ Beam halo should be cut at Preparation section

• Collimator

Two candidates for the arc section design

✓ (Separate Function) FODO x10 (20 D's & 20 Q's)

✓ Combined function FODO x14 (28 magnets)

 $B_x = Q^* y/r$ $B_y = D + Q^* x/r$

Combined Function –Merit & Demerit?-

≻Merit

Reduce # of components

can increase # of (Q-)magnets. \implies Smaller beam size space btw magnets \implies monitor can be installed cost reduction

≻Demerit

No example in the world Tunnability is restricted need corrector?

We adopt combined function scheme !

Treatment of Combined function w/ SAD

 $B_{y} = B_{D} + Q_{\text{grad}} \times x$ $= Q_{\text{grad}} (x - \Delta x)$ $\Delta x = -\frac{B_{D}}{Q_{\text{grad}}}$

Quadrupole magnet displaced by Δx .

Fitting parameters,

 Δx (by hand), Q_{grad} , angle of magnet

Fitting condition for the cell

(a) Periodic

(b) 90° phase advance

(c) Align orbit and magnet at this point

f or each of two magnets

(d) Bend by 5.76°

Arc section optics (fitting result)

Admittance : 205π mm.mr for horizontal,

Simulation Study (w/ GEANT3 & Geant4)

Magnet geometry and field are set via data file.

applicable to different beamlines.

•Magnet w/ Iron poles are stationed.

•Particles are tracked.

•Particle interact w/ magnet accoring to hadron production model.

•Secondary hadrons and electro magnetic showers can be traced.

In the simulation,

combined function section works as

expected from optics calculation!

by Y. Iwamoto

Arc section Admittance -quadrapole field change-

Admittance calculation with quadrupole field changed by 0, 1, 2 and 5 %.

The momentum bite was assumed to be 0, 0.2 and 0.4%.

Admittance changes about 10 % with quadrupole field decreased by 2 %.

Maximum is at quadrupole field increased by 1 %.

by Y. Iwamoto

Arc section Admittance -higher component-

Arc Section Admittance -Alignment error-

205π for no error

Acceptable alignment error of dx is \pm 0.2 mm. dy is \pm 0.2 mm. dz is \pm 5.0 mm. However, admittance can be recovered by changing the field strength to some extent

With the set up for dx=0.3mm $dx=194\pi$

Do we need corrector magnet for the arc section?

The ratio of the quadrapole field and dipole field is fixed. Correction scheme -> T.Ogitus's talk.

It will be decided within this year.

Preparation section –Overview-

- ✓ Make matching with the Arc.
- ✓ Consists of normal conducting magnets.
- ✓ Almost no freedom on the Length and angle
- ✓ Total Length : 52.3m **Tight spacing**
- ✓ 3.84 degrees bending
- ✓ Scrape beam halo to protect super conducting magnet in the Arc

Preparation section

Acceptance : 60π mm.mr (c.f. Acc. design = 6π mm.mr)

Summary

- J-Parc Neutrino beamline must transport high intensity(0.75 MW) proton beam with 0.01~0.1% loss.
- We adopt super-conducting combined-function magnets for the arc section.
- Simulation study for the possible beam loss sources and halo scraper (see Tanabe's talk) is on going.
- Current big subject is a decision about corrector magnet for the combined function magnet.

Supplement

Arc section – fitting results-

K1 = 0.18085

$$\frac{dB_{y}}{dx} = K1 \times \frac{B_{o}\rho}{L} = 18.620T / m$$

$$B_{y}(\text{dipole}) = \frac{dB_{y}}{dx} \times \Delta x = 2.5863T$$
ビーム方向

Admittance : 165π mm.mr for horizontal,

 262π mm.mr for vertical

The set-up in GEANT3 calculation

Incident beam size in x-x' phase space is 2000π . (x: horizontal, y: vertical)

Focus 24π mm.mr beam

Momentum dispersion at target

$$\approx 600 mm / \frac{\Delta p}{p}$$

Cannot be zero due to limitation of beam line length.

Zero is preferable but this is acceptable.

Incident beam size in x-x' phase space is 1000π .

Incident beam size in y-y' phase space is 1000π .

Beam size in x-x' plane はやってませんでした…

Incident beam size in x-x' phase space is 1000π .

