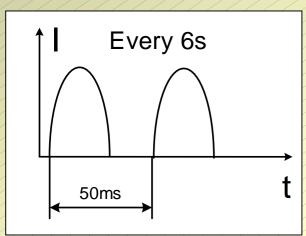
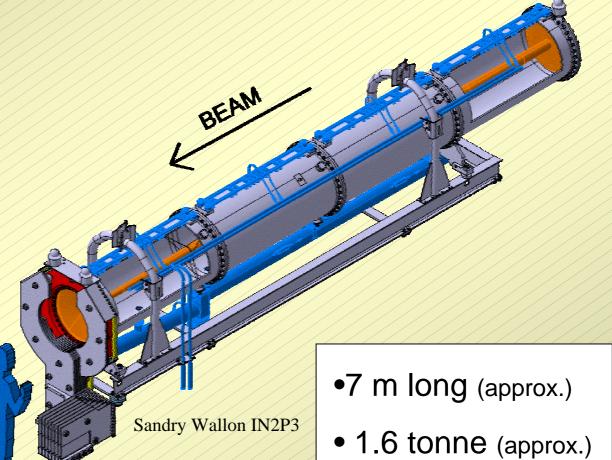


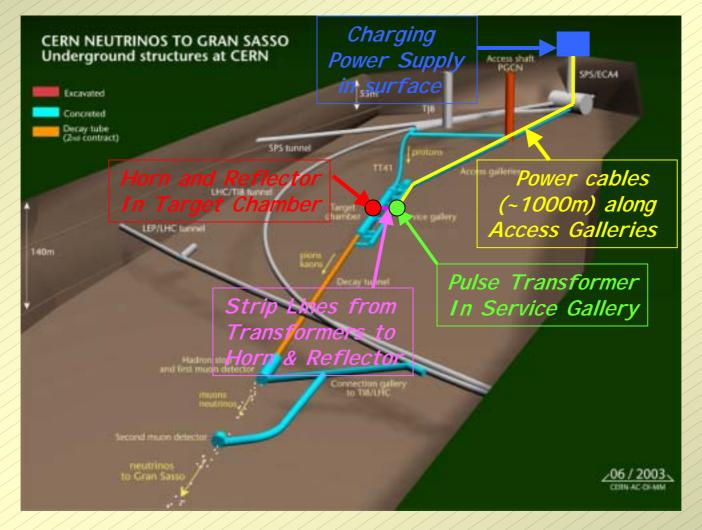
The CNGS Horns Electrical Systems

4th workshop on Neutrino Beams and Instrumentation 7 - 11 November 2003 at KEK

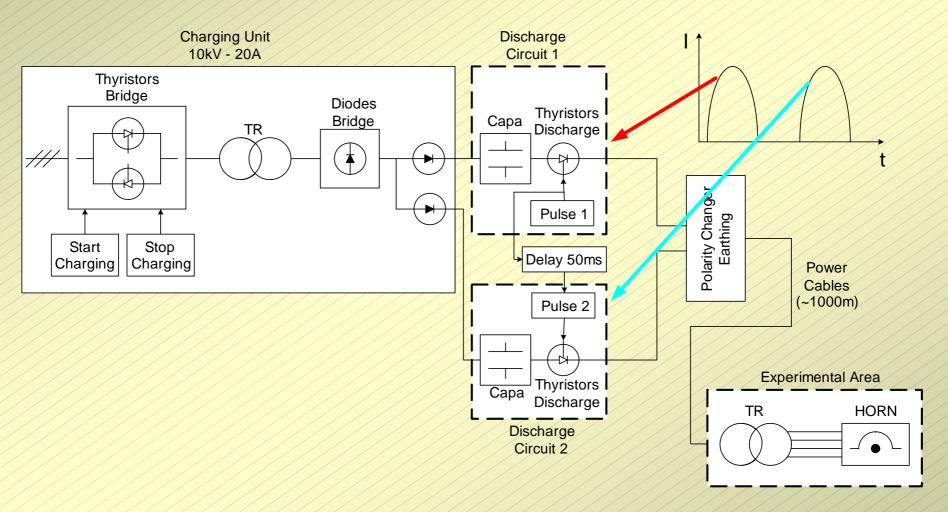

Gilles. Maire EP/TA3



- > Introduction.
- > Electrical Circuit.
- ➤ Components and Status.
- > Test of inner conductor Horn.
- > Controls.
- Planning.
- > Conclusions.


<u>Introduction</u> <u>Horn and Reflector (Load)</u>

<u>Introduction</u> <u>General View</u>



<u>Introduction</u> <u>Parameters</u>

	T	LIGHT	DEEL EGTOD 6 :
	Unit	HORN System	REFLECTOR System
Load Peak current	kA	150	180
Transformer ratio		16	32
Primary current peak	Α	9375	5625
Load inductance	μΗ	2,7 X 16 X 16 = 691	1,5 X 32 X 32 = 1540
Total inductance with 4 cables	μΗ	1210	2046
Load resistance	mΩ	0,6 X 16 X 16 = 154	0,21 X 32 X 32 = 215
Total resistance with 4 cables	mΩ	328	495
Total capacitance for one pulse	μF	4080	4080
Pulse duration	ms	7,5	10
Charging voltage	V	7700	6300
Total stored energy	kJ	2 X 119 = 238	2 X 80 = 160
Load max. voltage	V	280	150
Mean power dissipated by current only (2 pulses)	kW	16	10,5
Total power dissipated (with beam)	kW	26	16,5
Water flow for delta T=5C	l/min	70	70
Pressure	bar	1,2	1,2

Electrical Circuit <u>Diagram</u>

Electrical Circuit WANF Recuperation or NEW?

		Beginning of Project	NOW
	Thy. Bridge	WANF Recuperation	WANF Recuperation
Power Supply	Transfo. LV/HV	NEW	NEW
	Electronics	WANF Recuperation	NEW
Сар	acitors	WANF Recuperation	NEW
Discharge Switches		NEW	NEW
Power Cables		NEW	NEW
Pulse Transformers		NEW	WANF Recuperation

Components and Status Charging Power Supply

- Need to increase charging voltage to 10kV.
 - Buy new transformer (LV/HV), first delivery in July 2003 and second for July2004.
 - All other power components can work at 10kV.

Electronic regulation and interlocks.

- Old and obsolete regulation (25 years old). We had spare cards but electronic components didn't exist on the market.
- The Power Group will take in charge this installation after commissioning. We will install a standard electronics of this group. The study and installation will be done for the end of 2003.

Components and Status Charging Power Supply

Old Electronic

New Electronic

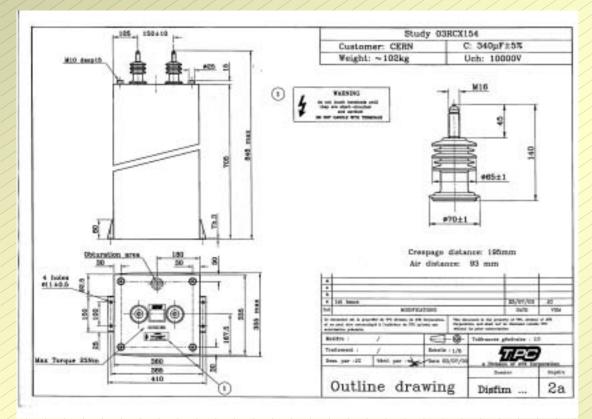
6U

24U

> At the beginning of Project

- We wanted to reuse WANF capacitors.
- For safety and infrastructure constraints, Safety Division of Cern forced to us to install this equipment in a new building. The estimate cost of this new building was 650kCHF.

> Now


- After new study, we will buy new capacitors (self healing technology) for a cost of 200kCHF.
- We will install equipment in an existing building.

> Call for Tender

- Result of the Call for Tender was in June 2003, AVX-TPC (FR).
- Pre-Series in December 2003 and series in September 2004.

Components and Status Capacitors Discharge

Capacitance	340µF +/-5%
Operating Voltage	10000Vdc
Reverse Voltage	50%
Maximum Peak Current	1300A
Energy	17kJ
Repetition Rate	6sec
Life Time	2x10 ⁷ pulses
Serial resistance	$<$ 3.3 m Ω
Capacitor inductance	<100 nH
Dielectric Stress	206 V/μm
Ignition temperature of dielectric fluid	Rape seed oil: 344°C
Dielectric system	Rough polypropylene film metallized
Dimensions	L=360mm W=335mm H=705mm
Weight	102kg

<u>Components and Status</u> <u>Capacitors Discharge</u>

<u>Components and Status</u> <u>Capacitors Discharge</u>

Rack with WANF capacitors

- WANF capacitors
 - 36 racks with a total of 360 capacitors.
- New capacitors
 - 12 racks with a total of 48 capacitors.
- Results
 - Space saving. Number of racks divided by 3.
 - Important cost saving for infrastructure and cabling.

<u>Components and Status</u> <u>Thyristor Switches (20kV, 18kA)</u>

All Th. Switches needed have been bought and delivered by ARCEL (FR).
3 thyristors in series, sharing resistor, RC snubber and impulse transformer.

<u>Components and Status</u> <u>Thyristor Switches (20kV, 18kA)</u>

2 Th. Switches are already installed and tested in BA7.

- •8,2kV, 170kA with ratio 32
- •6,5kV, 150kA with ratio 10

<u>Components and Status</u> <u>Power Cables</u>

- Important parameters for the choice of the power cables.
 - Resistance and inductance cable must be much smaller than load impedance (Transformer, Strip Lines and Horn).
 - ✓ To minimize the voltage drop in the cable.
 - ✓ Not to increase too much the duration of the pulse.

Our choice.

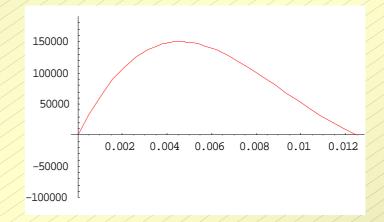
- Four 18kV cables in parallel (each with 2 twisted 150 mm2 CU conductors) will be installed per system.
- For 4 cables in parallel, the resistance and inductance (Nexans data sheet) will be : $R = 100 \text{m}\Omega$, $L = 160 \text{ }\mu\text{H}$.
- Measurements have been performed on the existing WANF cables.
 The impedance of this cable was R = 110mΩ, L = 130μH.

> At the beginning of the project

 We wanted to buy 2 new transformers with ratio 14 for an estimate cost of 580kCHF.

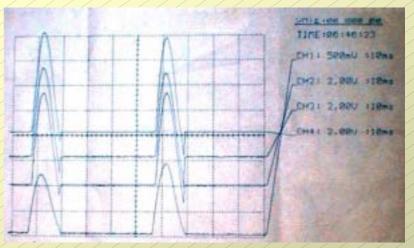
Now, reusing of WANF transformers

- A test program has been realized to validate the reusing of the 2 Tesla pulse transformers of WANF.
- We can reuse this transformers in ration 32 or 16 (special coupling in the secondary side.



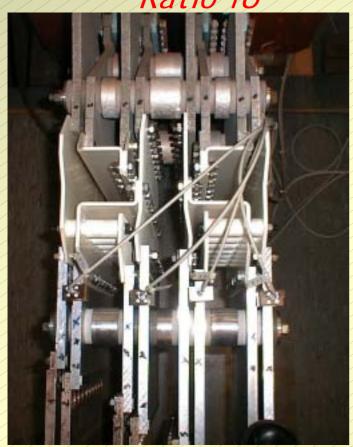
<u>Components and Status</u> <u>Pulse Transformers</u>

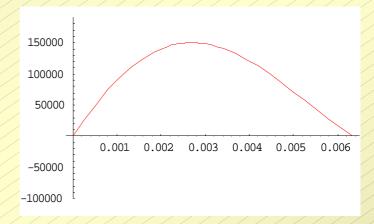
Ratio 32



Simulation

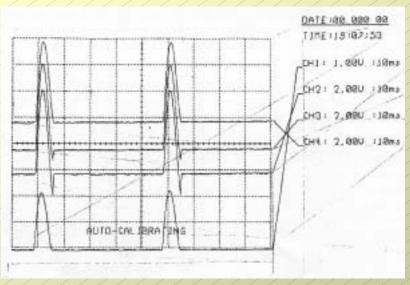
SL Current





<u>Components and Status</u> <u>Pulse Transformers</u>

Ratio 16

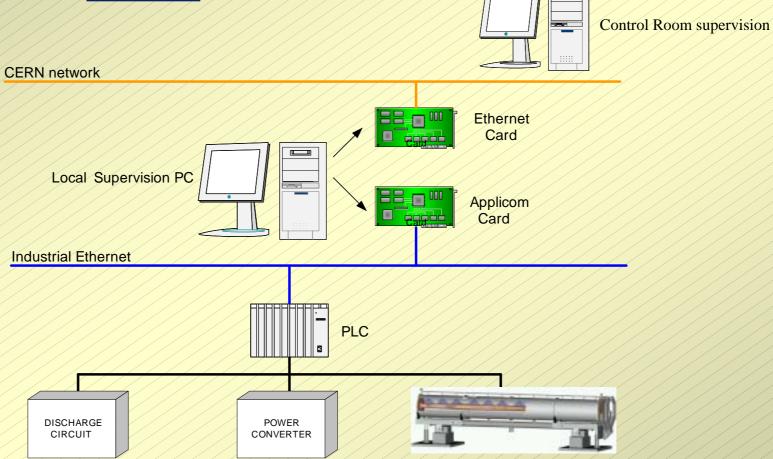


Simulation

SL Current

Primary Current

Test of inner conductor Horn 100.000 double pulses in Oct. 2003

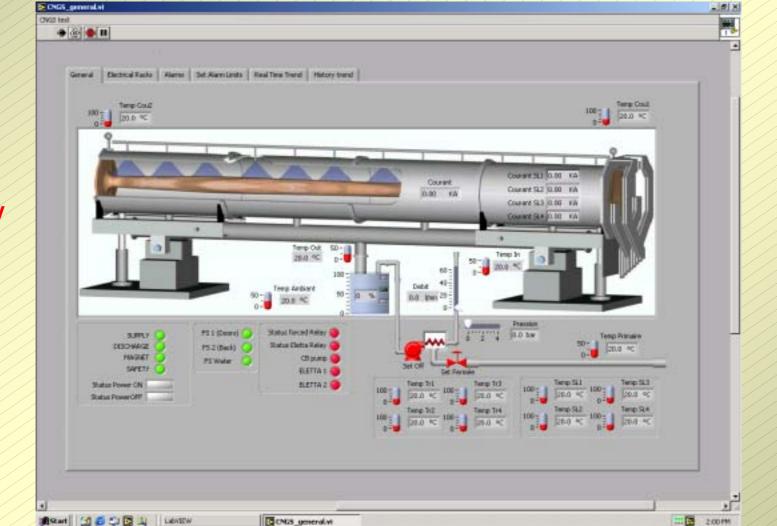


1 = 150kA

Water Flow = 501/min at 1.5 bars Ambient temp. = 20°C Primary Water temp. = 20°C

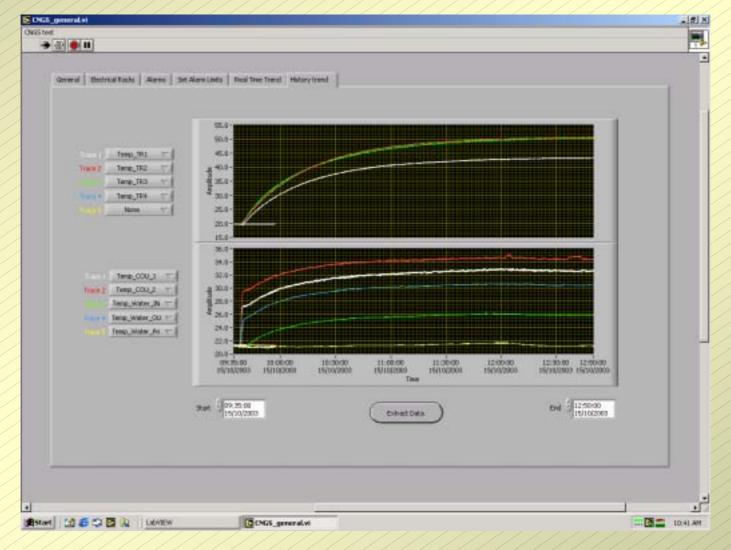
	Start	End
Neck Small diam.	20°C	32°C
Neck Big diam.	20°C	34°C
Water IN Horn	20°C	26°C
Water OUT Horn	20°C	30°C
Transformer	20°C	50°C

Designed by Sylvain RAVAT EP/TA3

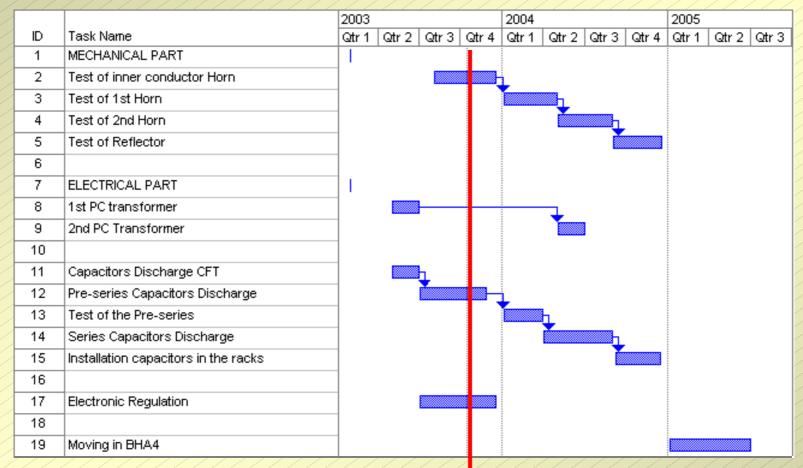


PLC Racks

LieNTEW


Controls

General View



Historical View

Nov. 2003

> Electrical circuit

 Good progress since the beginning of the project with the validation of the electrical circuit.

Cost Saving of 750kCHF since the beginning of project.

- Migration to an existing building with new capacitors.
- Reusing of the pulse transformers.

Test and Key date

- Validation of the first Horn inner conductor with 100.000 double pulses during October 2003.
- Test of the two Horns and Reflector before the end of 2004.
- Power cables will be installed at the beginning of 2005.
- Moving electrical circuit in BHA4 at the beginning of 2005.