Use of multi wires chambers in air for profile measurements of intensive beams at IHEP (Protvino) ## Neutrino beams at IHEP | Years | Proton
beam | Neutrino
beams | Detector(s) | Results | |-------------------|--|---|---|---| | 1974
-
1982 | Up to 2x10 ¹² , 30 bunches, 5µs spill duration | ν _{μ,} anti-ν _μ
focused
beam;
beam-dump | ITEP Spark
Neutrino
Detector | μ-pairs in v-interactions; search for short-lived particles using nuclear emulsion; σ_{tot}(vN), quasi-elastic scattering, including limits on v_μ-oscillation parameters, v_μe-scattering, etc. prompt neutrinos (charm production in pFe-interactions) | | 1985
-
2003 | Up to
1.4x10 ¹³
(booster),
29
bunches,
5µs spill
duration | ν _{μ,} anti-ν _μ focused beam; beam-dump; short decay path | SKAT Bubble Chamber (up to 1990); JINR-IHEP Neutrino Calorimeter | v (anti-v)-inclusive scattering, structure functions, ν_e-ν_μ universality, exclusive channels prompt neutrinos ν_e-oscillations with Neutrino Calorimeter | ## Construction #### Mechanical construction of chamber (type A) ## Construction - 2 #### Main parameters of chamber A and B | | | Chamber A | Chamber B | |------------------|----------------------------------|--|--| | Signal electrode | Construction | 14 central + 2x12 wires
connected in parallel,
38mm working area | 16 strips, 140mm
working area | | | Material | beryllium-bronze alloy | aluminum | | | Size | wire of Ø 200□ | 40⊒ x 8mm | | | Distance
between wires/strips | 0.8mm | 1mm | | Bias plane | | 116 wires, 1mm step,
beryllium-bronze alloy | 116 wires, 1mm step,
beryllium-bronze alloy | | Distance b | etween signal and bias plane | 3mm | 3mm | ## **Electronics** ## Schematic drawing ## Measurements (vacuum) Originally the chambers were used inside of beam pipe under a pressure of ~10⁻² torr #### Beam profiles Beam profile for focused (chamber A) and wide beam (chamber B) #### Number of δ-electrons Number of \boxtimes -electrons per proton (measured with $V_{bias}=0$): chamber A -0.03, chamber B -0.01 ## Measurements (vacuum) - 2 #### Linearity - chamber signal is a sum of 14 central wires signals - intensity measured by BCT - Φ $V_{bias} = 0$ • the same dependency was observed for chamber B too ## Measurements (vacuum) - 3 #### Dependence of signal on pressure and bias voltage chamber signal is a sum of all wires signals - for V_{bias}=0 the signal is equal for all pressures - ◆ after first 1-2 years of use all chambers were operated with V_{bias}=0 ### The chambers in air #### Focused neutrino beam #### Short decay path beam ## Measurements (air) Proton intensity in 10^{12} protons per spill (5 \sqsubseteq s) Proton intensity in 10^{12} protons per spill (5 \sqsubseteq s) ## Summary The multi wires chambers were usefully used during many years in vacuum and air for profile measurements of intensive proton beams.