Overview of the KEK Neutrino Beam Facility and its Operation

Summary after December 2002 (Recovery of SK)

K.H. Tanaka

for the KEK-PS Beam Channel Group & K2K Beam Monitor Group.

(Data presented here were prepared & compiled by Dr. Iwashita.)

Contents

- 1. Introduction
 - 2. Performance
 - 3. Summary
 - 4. Future Run Plan

K2K Experiment

The 2nd Phase of Long Baseline Neutrino Oscillation Experiment

Far Detector:

Recovery of SK

Accident: November 12th, 2001

Photo by Kamioka Observatory, Institute of Cosmic Ray Research, The University of Tokyo

Recovery History

- Reconstruction Completed: December 10th, 2002
- Fast Extraction Tuning Start: December 17th, 2002
- Test Run Start: December 22nd, 2002
- Test Run End: December 25th, 2002
- K2K-II Start: January 18th, 2003
- Now: Running! till February 2004.

Accelerator Complex

- 12GeV-PS
- 500MeV Booster
- 40MeV LINAC
- Photon Factory
- B-Factory
- ATF

Neutrino Beam Facility

Side View

Schematic Drawing of the Facility

Primary Proton Beam Line (Extended Part)

Slope (Straight) Section, 5m/72m. 20t Crane is here.

Primary Proton Beam Line (Final Focus Part)

Q-triplet and Correction Magnets Horns

Horns, Target & Decay Volume

- Two Horns
 (Collector & Reflector).
- Built-in Target in Collector
- 250kA Operation
- 10M Excitation with 30mm Target
- Transformer near-by
- 200m Decay Volume filled with He.

Primary Proton Monitors

- Profile
 - Luminescence Screen(**蛍光板**)
 - SPIC
- Intensity
 - CT
 - SEC

Segmented Parallel Plate Ion Chamber (SPIC)

- Operated in He.
- Work in fast Beam with Time Constant Circuit.
- 64ch ADC readout (H-32ch, V-32ch)

Proton beam

Decay Volume & Muon Monitor

Muon/Proton Beam profiles

Muon Profile measured by Muon Chamber and SSD's.

Proton Profile measured by SPIC.

1ch=1.27mm

Front Detector as Neutrino Beam Monitor

Front Detector Photograph

1kt Baby Kamioka

SciFi Lead Glass

Muon Range Detector

Front Detector Configuration

1ktWCD: Same Type Detector as SK

MRD and SciFi: Fine Grained Precise Detector

MRD: Massive and Large Solid Angle Detector

Neutrino Beam Profile (MRD)

- One Month Data
- Yellow belt: Fitting Error
- Dot-dashed line: Center from GPS survey

Super-Kamiokande

(Completed in April, 1996)

50,000 ton water Cherenkov detector (22.5 kton fiducial volume)

Livetime (exposure): 1289 days (79.3 kt·yr)

Neutrino Energy (Monte Carlo)

Neutrino Profile (Monte Carlo)

Positioning Precision from KEK to SK

Experimental Requirement:

Positioning by GPS and Optical Survey

```
Horizontal=1.2m, Vertical=0.7m, \sim \pm 0.005mr,
```

Beam Line Alignment and Monitoring

```
Horizaintal \sim \pm 0.02mr,
Vertical \sim \pm 0.05mr,
```

• Beam Control and Tuning (Short Term)

```
Horizaintal ~ ± 0.03mr,
Vertical ~ ± 0.06mr,
```

Performance December 2002 November 2003

Or, Long Range Beam Stability!?

POT for K2K-II

Delivered Protons on Target (POT)

Date Goal: 10²⁰ POT (for Analysis)

Muon Profile: Centoroid Stability

Beam Shift Correction

- 1ch shift (day)
- 2ch shift (night)

Human Correction

- •DCCT error?
- •Magnet coil?
- •Ion source?
- •EX septum?

Muon/Proton Correlation

Incident Beam Position (cm)

Concept of the Horn Lens System

- Horn is –100 times Image Magnifier.
- For accurate aiming, stable positioning of proton beam on target is essential.
- Beam monitors of primary protons are very important.

Neutrino Profile: Centroid Stability

(Muon Range Detector)

Horizontal

+1 mrad

-1 mrad

Vertical

+1 mrad

-1 mrad

Neutrino Event Rate Stability

(Muon Range Detector/POT)

Horn 250kA Target 30 mm

Horn 200kA Target 20 mm

integrated day (1 data point / 2 days)

Event Number at SK/POT

こるもごろふすみるのふ検定

SK Event:
Time
Resolution

 $-0.2 \mu sec$

 $T=T_{sk}-T_{kek}-TOF$

1.3 µ sec

Observed SK events 4.8x10¹⁹pot (Jun99-Jul01)

# of observed events and expected events 1999/06-2001/07					
			$\Delta m^2 (\times 10^{-3} eV^2)$		
	Obs.	No Ocsi.	3	5	7
FC 22.5kt	56	80.6 +7.3 -8.0	52.4	34.6	29.2
1-ring	32	48.4 ± 6.7	28.1	17.8	16.6
μ -like	30	44.0±6.8	24.4	14.6	13.5
e-like	2	4.4±1.7	3.7	3.2	3.0
multi ring	24	32.2±5.3	24.3	16.8	12.6

FC 25.5kt 16 26+2:3 1.5x10¹⁹pot (Jan.03-April03)

Cf. MRD: 87.4^{+12.7}_{-13.9} SciFi: 87.3^{+11.9}_{-11.9}

No oscillation hypothesis is disfavoured at 97% CL.

Summary of Present Status

- Super-K recovered with half density structure.
- Neutrino shooting immediately re-started!
- Accelerator, Beam channel, Horns, and Beam Monitors are all stable and ~7x10¹⁹ POT has been achieved before 2003 Summer Shutdown
- Nice aiming to Super-K continues and we have stable event rate at Super-K.
- Present Beam time started September 30th 2003 continues until February 15th 2004.
- 10²⁰POT will be reached in 2004.

KEK-PS Beam Channel Group

7 Physicists + 6 Engineers + 1 newcomer (Dr. A. Toyoda) conducted by Prof. M. Takasaki.

Neutrino Beam Facility

Side View

Neutrino Energy (Monte Carlo)

Neutrino Profile (Monte Carlo)

