Decay Tube & Windows

- Introduction (Location, Planning)
- Decay Tube
- Entrance Window
- Exit Window
- Vacuum System

Location

Location

Location

Planning

Decay Tube

Decay Tunnel:

- Internal diameter of 3.5m, 992m long, slope of 5.6%
- Supported by shotcrete

Decay Tube:

- Internal diameter of 2.45m, 998m long, 18mm thick
- Made of carbon steel
- Vacuum 1 mbar

Decay Tube Sleeves:

- *6m long (2x3m, welded)
- Will be combined to 18m long sleeves in target cavern

Decay Tube: Transport

Transported from surface to target cavern

Mechanical workshop in target cavern

3x6m sleeves welded → 18m

Decay Tube

3 x 6m-sleeves on surface

3 x 6m-sleeves in target chamber

1x18m-sleeve in target chamber

Decay Tube: Installation

Decay Tube: Quality Control

Contractor - Independent Control Agency - CERN

Plates / Pipes

Dimensions, chemical analysis, mech. characteristics 100% Ultrasonic test 20%

Welds	Workshop *	Decay Tunnel *
Visual Inspection	100%	100%
Ultrasonic test	85%	100%
Dye-Penetrant	100%	100%
X-Rays	15%**	

Tightness test of Decay tube - At the end of the works

^{* %=}percentage of weld length checked**X-rays check all welds not checked by ultrasound

Entrance Window

Minimize particle loss → Thin

2mm Titanium window

Entrance Window: Safety

FE calculations → ok, no active cooling needed X-ray & pressure test 3 bar → ok

Rupture?

Installation
Temporary Flange

Shut Down

Window + Shutter

Safety during access (vent if doubt)

Entrance Window: Safety

Entrance Window: Safety

Solution...

Sufficient?

- → More calculations
- → Other ideas

Use ventilation to balance pressure (pressure losses in ducts)

- → High-velocity zone moved
- e.g. 2200Pa, allow 50m/s
- → Duct of D=0.45m, takes 10 mins

Exit Window Location

Exit Window

Lower energy particles → Thick

50mm Carbon Steel

Avoid high temperatures

(beam dump: uncontrolled area, no access)

◆ FE calculations → not safe

(beam dump cooling: extra circuit easy to add)

→ Active cooling

Exit Window

NBI 2003 - Decay Tube and Windo Presentation by Ans Pardons

Exit Window: Installation

Exit Window: Installation

Vacuum System

Vacuum System

Vacuum Pumps

- Pumps with air cooling or independent cooling circuit
- Pry pumps → no oil → no duct needed for exhaust

Principle of Dry Pump

2 identical pumps of 250m3/h

→ 3 days pumping to obtain 1mbar in decay tube