Hypernuclear Physics Experiments at J-PARC

Tomofumi NAGAE J-PARC Project Office KEK

Nuclear Physics in the 21st Century

- Heavy-Ion Colliders : RHIC, LHC-Alice
 QGP at High Temperature
- e⁻ and photon beams : JLab, SPring-8, etc.
 Structure of proton, Hadron spectroscopy, etc.
 Hadron beams : J-PARC, DAFNE, GSI *High-Density Hadronic Matter, Exotic Hadrons*Unstable Nuclear Beams : RIBF, GSI, ISOLs *Isospin Limit, Nuclear Astrophysics*

LOIs in Strangeness Nuclear Physics

- L06: New Generation Spectroscopy of Hadron Many-Body Systems with Strageness S=-2 and -1 (K. Imai et al.)
- L07: Hyperon-Proton Scattering Experiments at the 50-GeV PS (M. leiri et al.)
- L08: High-Resolution Reaction Spectroscopy of S=-1 Hypernuclei (H. Noumi et al.)
- L09: Neutron-rich Λ hypernuclei by the double-charge exchange reaction (T. Fukuda et al.)
- L10: Study of Dense \overline{K} Nuclear Systems (T. Nagae et al.)
- L21: Precise Measurement of the Nonmesonic Weak Decay of A=4,5 Λ Hypernuclei (S. Ajimura et al.)

Two LOIs selected as Day-1 Experiments

L06: New generation spectroscopy of hadron many-body systems with strangeness S=-2 and -1

- K.Imai, M.Nakamura, H.Funahashi, M.Yosoi
- T.Nagae, M.leiri, H.Noumi, H.Outa, M.Sekimoto, H.Takahashi, Y.Sato, A.Toyoda
- T.Fukuda, P.K.Saha
- K.Nakazawa
- K.Yamamoto, T.Yoshida
- O.Hashimoto, K.Maeda, H.Tamura, S.N.Nakamura, T.Takahashi, Y.Fujii,H.Kanda
- T.Kishimoto, A.Sakaguchi, S.Ajimura, Y.Shimizu, S.Minami, T.Itahashi, T.Hayakawa
- M.Iwasaki, K.Itahashi, K.Tanida, Y.Matsuda

Japan

- J.S.Song, I.G.Park, C.S.Yoon, S.H.Kim
- J.Y.Kim
- M.Y.Pac

- J.K.Ahn, I.K.Yoo
- H.Bhang, M.Youn

Korea

- S.Zhou, L.Zhu
- China

- B.Bassalleck
- L.Tang
- P.Markowitz, B.Raue, J.Reinhold
- M.May, R.E.Chrien, A.Rusek, P.H.Pile
- S.Choi
- Ed.Hungerford
- G.Franklin, R.Schumacher, B.Quinn

USA

- T.R.Saitoh, A.Banu
 - Germany
- J.Arvieux

France
 F.Kienle, M.Cargnelli, J.Marton, J.Zmeskal

Austria

Italy

- S.Marcello, T.Bressani
- M.Agnello
- A.Feliciello
- -
- P.Tlusty
- Czech

Strangeness Nuclear Physics

New Hadron Many-Body Systems with Strangeness

Information on S=-2

- \bigcirc Double Λ hypernuclei
 - Two old emulsion events(1963,1966)
 - One recent event in KEK E176(1991)
 - Nagara event in KEK E373(2001)
 - Binding energy of $^{6}_{\Lambda\Lambda}$ He
 - m_H>2223.7 MeV/c²
- \odot Ξ hypernuclei ?

Very limited spectroscopic information

(K⁻,K⁺) Spectroscopy

○ 2 MeVFWHM resolution

 ∼6 events/day/MeV for 50 msr, 2g/cm²-thick Pb → ~20 days

High-presicion γ spectroscopy of hypernuclei

∆E ~ a few keV (FWHM) by Hyperball << ~ 1 MeV by reactions</p>

Precise Structure of Λ Hypernuclei

YN, YY Interactions

 $\begin{array}{l} \Lambda \text{N}: \text{ spin-dependent forces, } \Lambda \text{N-}\Sigma \text{N} \, / \, \Lambda \text{NN forces, } \\ \text{ charge symmetry breaking, p-wave interaction} \\ \Xi \, \text{N}, \, \Lambda \, \Lambda \, \text{interactions} \end{array}$

Impurity effects

B(E2) -> shrinking effect Change of cluster structure/shell structure

Nuclear medium effects

B(M1) -> m $_{\Lambda}$ inside a nucleus

Hyperball-3

effic. > 10% at 1 MeV (x4 of Hyperball)
Rate limit ~2x10⁷ particles /s (x5)
Yield: x20 for single γ x80 for γ γ

(1-b) Light hypernuclei Impurity effect example of 20 Ne : change of cluster structure

Layout Option - K1.8+K1.1BR

Beam Line Specification by H. Noumi

	K1.8	K1.1	K1.1BR
Length (m)	46.4	24	26.9
Acceptance (msr.%)	2.7	16.5	4.9
Intensity (ppp)			
1.8 GeV/c	1.0E+07		
1.1 GeV/c	4.9E+05	4.1E+07	1.0E+07
Electro-static	6m-7.5MV/m	2m-7.5MV/m	6m-5MV/m
Separator	×2	×2	×1
Separation/Size(rms)	10.8	4.2	6.5
Beam Mom.Resol.(%)	0.07	-	0.05

L10: Study of Dense Kbar-Nuclear Systems

Formation of High Density State

Physics Impacts

- Formation of Cold(T=0) and Dense($\rho > 5 \rho_0$) nuclear matter
 - Quark-gluon plasma, color superconductivity
- Chiral symmetry restoration
 - In-medium KN interactions
- Kaon condensation
 - Neutron star, strange star

T. Hatsuda and T. Kunihiro, Phys. Rev. Lett. **55** (1985) 158. W. Weise, Nucl. Phys. **A443** (1993) 59c.

How to produce ?

- Single Kaon bound state
 - (K-,π-) reaction: BNL P967 Nagae
 - (K-,N) reaction Kishimoto E548
 - (Stopped K-,n) reaction: KEK E471 Iwasaki E549
- Double Kaon bound state
 - (K-,K+) reaction

L07: Hyperon-Proton Scattering Experiments

Toward a Modern picture of "Nuclear Force" Baryon-Baryon Interaction in SU(3)_F

meson or quark ?

M. leiri (KEK) K. Imai (Kyoto U.) B. Bassalleck (U.ofNM) P. Tlusty (NPI)

Estimated Yields

100 days Detectable number

• reaction rate

[s-1]

0.009

78000

2300

L08: High-resolution Reaction Spectroscopy of S=-1 Hypernuclei Y. Fujii, T. Fukuda, O. Hashimoto, H. Noumi, P.K. Saha, and T. Takahashi

L09:

Neutron-Rich A Hypernuclei by the Double-Charge Exchange Reaction T. Fukuda, H. Noumi, and P.K. Saha

L21: Weak decay measurement of light hypernuclei at J-PARC

Shuhei Ajimura, Osaka University

Nonmesonic decay of A=4, 5 hypernuclei

Allowed initial states for A=4, 5 hypernuclei

hypernucleus	∧n→nn	$\Lambda p \rightarrow np$
$^{4}\Lambda^{\mathrm{H}}$	$^{1}S_{0}, ^{3}S_{1}$	${}^{1}S_{0}$
⁴ ∧ ^{He}	${}^{1}S_{0}$	${}^{1}S_{0}, {}^{3}S_{1}$
⁵ ∧ ^{He}	${}^{1}S_{0}, {}^{3}S_{1}$	${}^{1}S_{0}, {}^{3}S_{1}$

• $Gp(^{4}_{\Lambda}H)$, $Gn(^{4}_{\Lambda}He)$

- \Rightarrow we can measure ¹S₀ amplitudes directly.
- If $\Delta I = 1/2$ rule holds, $Gn(^4 \Lambda He)/Gp(^4 \Lambda H) = 2$.

 \Rightarrow we can check the validity of the $\Delta I = 1/2$ rule in B-B weak interaction.

Existing experimental results

 $Gn({}^{4}\Lambda He)/G\Lambda = 0.01^{+0.04}/{}_{-0.01}$ (KEK), 0.04±0.02(BNL)

 $Gp(^{4}_{\Lambda}He)/GA = 0.16 \pm 0.02(KEK), 0.16 \pm 0.02(BNL)$

NP A639(1998)261c NP A639(1998)251c

Detectors

• Decay Counter System $\Delta E - E$

 $\Delta E - TOF$

- thin plastic counter surrounding target(ΔE)
- outer plastic stack(E)
- tracking by DC neutrons by TOF
- π0 Spectrometer: ΔE=2 MeV

Estimated Yields

	⁴ ∧ ^H	⁴ ∧He	⁵ ∧He
beam intensity	$5 \times 10^{6} \text{ K}^{-/3.4} \text{ sec}$	5×10 ⁶ K ⁻	1×10^7 π^+
target thickness	0.125 g/cm ²	1.25	4
cross section	0.2 mb/sr	0.5	0.005
spectrometer acceptance	0.10 sr	0.05	0.03
spectrometer efficiency	0.8	0.5	0.5×0.5
decay counter acceptance	0.5	0.5	0.5
efficiency for decay p	0.8	0.8	0.8
efficiency for decay n	0.2	0.2	0.2
branching ratio (Ln→nn)	0.1	0.01	-
branching ratio (Lp→np)	0.01	0.1	0.2
nn events/200 shifts	10000	5500	-
np events/200 shifts	4000	220000	4000
expected error level	1.6%	1.5%	4%

Summary

- Strangeness Nuclear Physics Program
 - Many interesting subjects are waiting for J-PARC
 - Two LOIs (L06, L10) as Day-1 Experiments
 - At least, two K⁻ beam lines, K1.8 and K1.1BR, should be available at Day-1.
 - most of the proposed experiments can be done with these beams.
 - We will prepare new detectors, SKS', SPES-II, Hyperball-3, new CDS, etc.
- We are ready for Full proposals.