E14 (KOTO) Status

Taku Yamanaka / Osaka Univ.

Oct. 16, 2008 J-Parc PAC

Outline

- Beamline
- Beam survey
- Detector status
 - Csl calorimeter
 - readout system
 - veto counters

Beamline

Beamline Monte Carlo

- Injected neutrons from the target (to study beam halo)
- Increased statistics
- Geant simulation with all the K1.1 magnets

Collimators

- Optimized in horizontal and vertical directions separately
- Square beam at the CsI calorimeter

horizontal plane

vertical plane

Beam profile

- Achieved sharp edges
- neutron: halo / core

 $= 8.5 \times 10^{-5}$

Comments on the K_L beam

- A 3-cm diameter or square hole in the B1 yoke does not disturb the B1 field quality : no problem
- To accommodate a similar size of the K_L beam path in B2, a special type of window-frame magnet will be required : no problem
- Q2 and Q3 will have such a yoke structure to avoid the K_L beam path : no problem

Vacuum vessel

The installation position accuracy of B1 in the vacuum vessel will be a few 100 μ m.

J. Imazato, 5th PAC (June, 2008)

Effects of K1.1 elements

- Pb absorber (to absorb photons) is a major halo neutron source
- K1.1 D1 magnet acts as a shield -

Effects of K1.1 materials

 neutron halo / core ratio is suppressed by ~30% with K1.1 materials

	With all K1.1 materials	Without K1.1 materials	With K1.1-D1 only
Core n	4.7X10 ⁸	5.0X10 ⁸	4.8X10 ⁸
Halo n	(4.0±0.4)X10 ⁴	(6.3±0.5)X10 ⁴	(3.8±0.4)X10 ⁴

Schedule in FY2008

We have drawings to be used for discussion with engineers

Manufacturing collimators

- Similar to a collimator made for a neutron beamline
- Vacuum tight
- 3 months total
 - material production + annealing : 4 weeks
 - machining : 4 weeks
 - washing + Ni (or Cr) coating:
 1 week
 - welding : <1 week

KL movable stage (upstream-half)

Beamline summary

- Same requests to K1.1 as before
 - 30 mm diameter holes for the KL beamline
 - <0.2 mm thick vacuum windows</p>
- Fabrication of beamline components will be finished by Mar. 2009
- Installation by September 2009, for the beam survey

Review by FIFC

• Fabrication of main beam-line collimators is delayed.

Final decision about the shape of the collimator hole (circular or rectangular) yet to be made.

Will fix by the end of Oct.

Discussion on fabrication detail has not yet started. No engineering drawings! Started

- FIFC recommend strongly that the group should fix the final design of the collimators, contact a manufacture and start the fabrication as soon as possible.
- In order to complete the construction of KL beam line in the first half of JFY 2009 on time, the experimental group and facility construction team should have close contact and start preparation of beam line elements needed in the early days of the construction.
- FIFC recommends the experimental team to ask for some support by the mechanical engineering group to IPNS.

Beam survey

Beam survey in 2009

- The purpose is to measure:
 - K_L yield and energy spectrum [Priority 1]
 - x3 difference in the yield between FLUKA, Geant3, and Geant4
 - Core neutron yield [Basic information]
 - to confirm n/K ratio (x2 difference between MC packages)
 - Halo neutron yield [optional for 2009]
- Conditions:
 - 1% of full intensity (a few kW)
 - no K1.1 components are required

Profile at the Exit of Beam-line

Profile Counter

FIFC, T. Nomura (KEK)

Start consideration with counters used in E391a survey

A service succession as where the

Charged → • 4x5x1cm scinti. slab

3 Oct 2008

- Neutron → •4x5x6cm scinti. block
- Photon → 4x5x9cm sandwich (1mm Pb+5mm scinti, 15 layers)

Rate @ 1% of FULL	Scinti.slab (>0.5MeV)	Scinti.block (>7.3MeV)	Sandwich (>8.8MeV)
with absorber	50 kHz	220 kHz	350 kHz
w/o absorber	800 kHz	3 MHz	12 MHz

 Should improve rate capability and segmentation

4. K_I Flux Measurement

- Use $K_L \rightarrow \pi^+\pi^-\pi^0$
- scintillator + 1cm pitch wave length shifting fibers

14%

Z

Side View

Π

- 25x2 E391a Csl crystals
- No magnets

′İÀ\//60cm

40cm

Expected Performance

Reconstructed K_L mass

K_L Momentum resolution: {P(Recons)-P(True)}/P(True)

3 Oct 2008

FIFC, T. Nomura (KEK)

Expected Performance

CAR WERE STATE STATE STATE AND AND A WARDER TO A STATE OF THE STATE OF

- Trigger
 - >=1 hit in each bank
 - Eγ,thr.=5MeV
- Event / day

	Geom	Good	KL mass
		recons	cut
$KL \rightarrow \pi^+ \pi^- \pi^0$	~1500	~1250	~500
$KL \rightarrow \pi^0 \pi^0 \pi^0$	16	4	N/A

10kHz singles rate, 8% loss if we cut on extra hits 3 Oct 2008

1% of FULL INTENSITY

Source	Rate (Hz)
$KL \rightarrow \pi^+ \pi^- \pi^0$	2.3
KL→πeν	0.8
ΚL→πμν	0.2
$KL \rightarrow \pi^0 \pi^0 \pi^0$	0.2
Core n	
He bag	0.25
Air(*)	2.9

(*) Among 100 triggers, no events left after all cuts

Calibration of mini-calorimeter

LINKS "THE SAME SAME SHOW STATES

- Cosmic ray
- "Al plate run"
 - Al plate in the core
 - On moving stage for profile scan
 - Reconstruct π⁰ mass with given Z position

FIFC, T. Nomura (KEK)

Core neutron flux and spectrum Measurement

Core Neutron Measurement

The issue is
 its counting rate
 (in MHz)

Upper : w/ 7cm absorber Lower : w/o absorber

Will apply much higher threshold

Prefer lower intensity (0.1% of FULL)

thr	eshold	1MeV	5MeV	10MeV
	EM	4.6	3.6	3
	Had0	4	3	2.4
	Had1	2.4	1.7	1.3
	Had2	1.3	0.9	0.7
	Had3	0.6	0.4	0.3
	Had4	0.3	0.2	0.1
		-		
		1MeV	5MeV	10MeV
	EM	1MeV 91.6	5MeV 44.2	10MeV 27.3
	EM Had0	1MeV 91.6 13.5	5MeV 44.2 6.7	10MeV 27.3 4.9
	EM Had0 Had1	1MeV 91.6 13.5 5.1	5MeV 44.2 6.7 3.3	10MeV 27.3 4.9 2.5
	EM Had0 Had1 Had2	1MeV 91.6 13.5 5.1 2.52	5MeV 44.2 6.7 3.3 1.75	10MeV 27.3 4.9 2.5 1.3
	EM Had0 Had1 Had2 Had3	1MeV 91.6 13.5 5.1 2.52 1.2	5MeV 44.2 6.7 3.3 1.75 0.83	10MeV 27.3 4.9 2.5 1.3 0.63

3 Oct 2008

FIFC, T. Nomura (KEK)

Cerberus - core neutron detector

- Tested all the phototubes
- Testing with cosmic rays

Beam test @Tohoku Univ.

Dec.8-12 @Tohoku Univ. LNS (Sendai)

2days: Cerberus, 3days: CC03

electron beam information

- (tertiary beam: 1.2GeV/c e⁻ \rightarrow tagged $\gamma \rightarrow$ e⁻)
- energy: 100-800MeV/c
- rate: < 3000events/spill(~12sec.)</pre>
- size: FWHM ~50mmφ
- dE/E ~1% (>200MeV/c)

4. Halo Neutron measurement

- Feasibility depends on beam quality
- Bothersome in preparation and analysis
 - Need subtraction of K decay contribution
 - Need beam pipe to avoid core n interaction

ANTE SANGE SANSAGE STATE

Expected event rate after cuts		
halo n (vacuum)	0.53	
core n (vacuum)	0.08	
core n in air	6.9	
core n in He bag	1.1	

→Anyway, we will prepare for it

FIFC, T. Nomura (KEK)

Method

 Detection in "middle"

SHOW IN THE STREET OF THE PLANE

Reject KL originated events

LENGER MARKE STATES

) γ rejection cut	Stat.	#/spill	#/day	
1: energy deposit in Front =0	Halo n	0.49	13000	THE REAL
2: E_ratio_Inner<0.05	K _L origin	0.125	3250	
3: Middle E>50MeV				N. H. N.
4: E_ratio_Rear>0.1 MiddleE<300MeV		1% of	FULL	
3 Oct 2008 FIFC, T. Nomur	a (KEK)			24

Desired operation plan 1. 0.1% of FULL for 1 week Alignment, Core measurement • 2. 1% of FULL (as will be) for 1 week KL measurement Break here is preferable • 3. Additional 1% of FULL for 1-2 weeks KL measurement, Halo measurement •

FIFC, T. Nomura (KEK)

"FIFC's view"

• "No redundancy measurement"

Kinematics just determined by all the measurements other than KL mass constraint Can check tracks with pi0 vertex

Very little tolerance for background hit. Stability against background is not clear.

See background study results

 Independent check/ measurement of acceptance/ efficiency seems important.

Will think about it.

Stability /monitor of primary beam condition (intensity, position, time structure ...) is essential. Not yet been investigated fully.
 Beam monitor exists (Tanaka)

Drawing submitted for rad safety calculation

Detector Preparation Status

Csl Electromagnetic Calorimeter

- Unstacking: 5/8 done
- Unstacking and shipping ~400 crystals/month
- All the crystals will be unstacked in Dec. 2008.

wrap excessive ESD bag, and insert the glass plate into rubber groove on Al angle

Csl light uniformity tests

• Light uniformity test with source: Found 1 yellow crystal with 15% drop, but others <5% ADC

Readout system

- Low power Cockcroft-Walton base for CsI phototubes in vacuum + preamp to send differential analog signal
- Energy range: 1MeV ~ 1.3GeV; ~ 1mV/MeV

Performance of the CW base + preamp

- Rate dependence < 0.15% up to 2V_{pp} x 100kHz
- Pulse linearity < 0.2% up to 1.3GeV

FADC / Trigger / DAQ system

 Simplified design. FADC, trigger crates connected with 3Gbps optical fiber

Flash ADC

- 14bit, 125MHz FADC
- Checked basic performance in Dec. 2007 at beam test.
- Flash ADC design is almost done.
- 2nd version of FADC module by December.
- CsI + PMT + FADC with laser calibration system at Osaka next spring

• 100 channel beam test planned in summer 2009.

Veto counters - Main Barrel Veto

 10^{2}

Beam Hole Photon Veto

- Studying to reduce rates by
 - segmenting mirrors
 - making insensitive to low energy gammas

Layer

Summary

- Collimator design will be fixed by the end of October
- Collimators will be made by March 2009
- Detector for beam beam survey are being prepared / tested
- Waiting for an approval for a beam survey in 2009.

• Csl, readout system, veto counter preparations are under way

4. K_L Flux Measurement

- Assume π⁰ mass and get z vertex
 2 unknowns: π⁺ and π⁻ momenta p⁺, p⁻
 2 equations: $p_x^+ + p_x^- + k_{1x} + k_{2x} = 0$ $p_y^+ + p_y^- + k_{1y} + k_{2y} = 0$
- ~1000 reconstructed K_L / day with
 1% intensity (2E12 protons/pulse)
- Background ~ several events from 3π⁰ with Dalitz decays

2000 3000 4000

Kaon Momentum(MeV/c)

1000

5000

Performance Of "Cerberus"

□ Hadron part: visible ratio = 5%, detection efficiency = 60%

