Progress Report to PAC6 J-PARC E06 Experiment (TREK) Measurement of T-violating Transverse Muon Polarization (P_T) in $K^+ \rightarrow \pi^0 \mu^+ \nu$ Decays J. Imazato October 16, 2008

Outline

- 1. Introduction
- 2. Funding efforts
- 3. Status of detector R&D and design
- 4. Muon polarimeter
- 5. Systematic error study on local misalignments
- 6. Summary

Presentation is parallel to the "Progress Report"

- P_T is T-odd, and spurious effects from final state interaction are small: $P_T(FSI) < 10^{-5}$ Non-zero P_T is a signature of T violation.
- Standard Model (SM) contribution to P_T : $P_T(SM) < 10^{-7}$

 P_T in the region 10^{-3} ~ 10^{-4} is a sensitive probe of CP violation beyond the SM.

• There are theoretical models of new physics which allow a sizable P_T without conflicting with other experimental constraints.

P_T measurement

Use of upgraded E246 detector

Suppression of systematic errors is essential

PAC5 meeting in June

- Outline of the TREK experiment
- Theoretical model descriptions of P_T
- Funding and collaboration
- Progress in detector R&D
 - Systematic error analysis of the polarimeter global misalignment

We requested a recommendation for Stage-2 approval

High evaluation of physics and detector R&D However, the PAC conclusion was the

Necessity of total funding of the experiment to go to Stage 2

Funding efforts

- Japan
 - Aug. 2008:

Grant-in-Aid (Kaken-hi) "New science field" : failed

- Oct. 2008 :

Grant-in-Aid (Kaken-hi) "Specially promoted research" Application of 3.5 Oku Yen for the total detector and operation of TREK

- Canada (UBC)
 - Oct.2008 : Request to NSERC for additional target money
 - Continuing efforts for K1.1-BR beamline elements
- USA (Hampton University)
 - Sept. 2008 : Request to NSF for GEM projects
 - Necessity for full approval to get grant in USA and other countries

Detector R&D and design

- Polarimeter (Japan) : Grant is funded for chambers
 - GARFIELD calculation : done in Japan and Canada
 - 1/5 prototype model : completed and will be tested at FTBL in Nov.
 - Full size model designing : will be made soon after the test of the 1/5 model.
 - Muon magnet and one gap test arrangement : designed and will be ordered
 - Systematic error analysis : done and will be reported now
- Target (Canada) : Grant is partially funded
 - MPPC radiation hardness test with π^+ beam : October 18-24 @TRIUMF
 - Fiber readout test with a WLS fiber : within this year @ TRIUMF
- CsI(Tl) (Russia) : Internal effort
 - New current amplifier for APD readout test : being made @ INR
- GEM chamber (USA) : Internal effort
 - Simulation calculation with GEANT4 : being made

Muon polarimeter

- Most essential part of the TREK experiment
- Good alignment is needed for the chamber and magnetic filed
- Optimization for π^0 -*fwd/bwd* events (namely e^+ -*L/R* asymmetry)

1/5 prototype model

Scattering characteristics

- Large scattering effects
- Limitation to tracking performance

Tracking performance

- Optimum number of layers for tracking = 4 5
- Tracking resolution in the (y, z) plane for 30 MeV :

Emission angle (degree)	Devay vertex resolution (σ in mm)	Emission angle resolution $(\sigma \text{ in degrees})$
0	0.5	4
30	0.5	5
60	1	6

• A similar moderate resolution for x if we adopt the charge division readout. 12

Muon field magnet

Design is completed and a one-gap magnet will be made within this FY.

- One gap test arrangement ($B_0 = 0.03$ T) with return yoke
- To be tested for :
 - ① Field distribution precision
 - 2 muon polarization measurement performance next year

- Optimization of shim structure to make a flat field distribution on the polarimeter chamber volume
- Reduction of weight of the yoke (brown part) 14

Packing factor: 0.2

Local misalignment

Polarimeter global misalignment is controllable

- Most serious effect = wire displacement
- ==> Shift of measured emission angle
- ==> Bias to emission angle analysis
 - Ambiguity in cone angle to define left-right emitted events
 - In accurate weight in weighted analysis

• Wire misalignments $\delta w_i = >$ Local spurious asymmetry : $\delta A^{sp}(r)$

$$\delta P^{\rm sp}{}_{\rm T} = \int \delta \rho (\mathbf{r}) \, \delta A^{\rm sp} (\mathbf{r}) / \alpha (\mathbf{r}) \, \mathrm{d}\mathbf{r}$$

$$\delta \rho (\mathbf{r}) = \rho_{fwd} (\mathbf{r}) - \rho_{bwd} (\mathbf{r})$$

$$\alpha (\mathbf{r}) = \text{analyzing power}$$

Tolerance to $\delta A^{\rm sp}(\mathbf{r})$ or $\delta \mathbf{w}_i$

Constraint on
$$\delta \rho(\mathbf{r})$$
 16

MC simulation

Chamber inefficiency

MC simulation of local asymmetry distribution

Effect of very bad wires

- Assumption
 - Bad 2 wires with ϵ =0.5
 - 4 layer tracking

Result

- Local singularity in A^{sp}
- Pos. A^{sp} and neg. A^{sp} symmetric structure
- Cancelled in the integration $\int \delta \rho(z) A^{sp}(z) dz$
- Better to avoid such a condition
- Necessity to monitor the wire efficiency during the measurement.

Asymmetry due to staggered wires

Stopper analysis

- LHS/RHS structural difference
- Different angular response
- Spurious local asymmetry
- After-effect of a muon track

Gap analysis

- No LHS/RHS asymmetry
- No influence of a muon track
- Slight degradation of angular resolution

We will adopt the "Gap analysis" 0

Systematics due to other effects

• Dead channels in the CsI(Tl) calorimeter

Summary

- We are still making efforts to obtain a grant for the total setup.
- We have started the polarimeter construction in Japan.
- Other R&D for the detector are under way in several places.
- No serious sources of systematic errors have been found in the polarimeter local misalignment, as we did not find any in the global misalignment of the chambers and the magnetic fields.
- Validity of the TREK experiment in terms systematic error is being confirmed. We will be able to suppress the error to less than 10⁻⁴.