J-PARC EI4 Experiment

Taku Yamanaka

Osaka Univ. J-PARC PAC@KEK June 6, 2008

Contents

□ Introduction to J-PARC EI4

□ Beamline design

□ Beam survey

□ Current status

J-Parc EI4 - $K_L \rightarrow \pi^0 \nu \overline{\nu}$

3

 $\rightarrow J/\psi K_S$

d

 \mathcal{N}

 χ

 $\pi^0
u \overline{
u}$

 Z^0

 \widetilde{u}

+

S

S

Physics

 Measure the imaginary part of CKM η and probe new physics beyond the standard model.

□ Goals

- $\Box \text{ Step I(EI4): First observation of } K_L$
- □ Step 2: Measure BR to <10%

EI4 Detector

- □ CsI : 7cm square x 30cm --> 2.5cm square x 50cm
- □ New photon veto in the beam
- Enhanced photon veto
- □ Wave form digitization

Beamline Design

Goal: CLEAN BEAM = Small beam halo to suppress background caused by halo neutrons producing π^0 s and eta's at detector

□ Halo neutrons = neutrons that hit detector

Many improvements since the last PAC in January 2008

EI4 Beamline

Collected neutrons at a plane coming from wide area (including large hole in Cu collimator) illuminating wide area of KL collimators.

□ Full simulation with KI.I magnets

Changed from round beam to square beam, to optimize collimator edges to the horizontally long target image.

Beam Survey

Beam Survey

□ Fall of 2009	#KL for "Original KI.I" design	
□ to measure:	MC package	#KL
	GEANT3	$(7.6\pm0.2)\times10^{6}$
□ Kaon flux	GEANT4 (QGSP)	(4.6±0.2)×10 ⁶
Neutron flux	GEANT4 (QBBC)	$(5.4\pm0.2)\times10^{6}$
	FLUKA	$(16.6\pm0.2)\times10^{6}$
☐ Halo neutron flux	"Report to EI4 Review/Planning Committee", Oct. 29, 2007	

□ Beam profile

□ charged particles, photons, neutrons in the experimental area

Beamline Area

Expect concrete shields for the final configuration

Discussing with Suzuki at Rad. Safety

Detectors For The Beam Survey

I. Scan Beam Core

Performance Of "Cerberus"

□ Hadron part: visible ratio = 5%, detection efficiency = 60%

2b. Core Photon Measurement

記録

3. Wide Scan

- At ~10% beam intensity, scan wider area with finger counters
- Measure tail that leads to "halo neutrons"

4. K_L Flux Measurement

4. K_L Flux Measurement

- $\begin{array}{|c|c|c|} \hline & \text{Assume } \pi^0 \text{ mass and get z vertex} \\ \hline & \text{2 unknowns: } \pi^+ \text{ and } \pi^- \text{ momenta } p^+, p^- \\ \hline & \text{2 equations: } p_x^+ + p_x^- + k_{1x} + k_{2x} = 0 \\ & p_y^+ + p_y^- + k_{1y} + k_{2y} = 0 \end{array}$
- ~1000 reconstructed K_L / day with
 1% intensity (2E12 protons/pulse)
- Background ~ several events from 3π⁰ with Dalitz decays

2000 3000 4000

Kaon Momentum(MeV/c)

1000

5000

□ Acceptance (RED LINE)

5. Halo Neutron Flux Measurements

- Install a light beam pipe to avoid neutron interactions in the air
- Should suppress photon backgrounds from K_L decays
- 2 methods are being planned

Halo Neutron Rate Measurement #I Cerberus + CsI Wall

Cerberus + Csl Wall

Halo Neutron Measurement #2 CsI + PWO

Csl Shipping

□ Shipped

216 large crystals and

384 small crystals to

Osaka

- □ Stored in 5~10% RH dry room in Osaka
- □ Imonth/cycle
- □ Will finish in November

Cockcroft-Walton Base For Csl

CW base prototype

✓ Made by Matsusada Precision HPMC-1.8N-01 (for 5cmPMT)

divided ratio K 2:1:1:1:1:0.5 A
maximum output voltage -1800V
drive voltage Vin +5V (fixed)
oscillation frequency 145kHz
output voltage control method voltage control Method

Cockcroft-Walton Base

Cockcroft-Walton Base

☐ Higher gain achieved (for 5cm crystals) with normal divider ratio

Some non-linearity observed. Bad tubes?

[] (To control background, 5% non-linearity is good enough.)

One More Thing...

Decided The Name And Logo

□K°TO = KOTO = K0 at TOkai

Summary

- □ First "close-to-final" beamline design
- Accumulating statistics and trying different packages (FLUKA, ...) for the beamline design
- Beam survey plan for
 - \Box beam profile,
 - \Box core neutron flux,
 - \Box K_L flux,
 - \Box halo neutron flux
- Csl shipping underway
- Designing and studying CW base, beam hole photon veto, DAQ, veto upgrade, ...

Backup Slides

Effect of K1.1 materials

At least, modification of K1.1 materials are needed to retain K_L yield

"KL alone" is most preferable from the view point of halo neutron flux

Table 3: Number of the core neutrons, halo neutorns and K_L 's per spill $(2 \times 10^{14} \text{ protons})$ at the three different configurations.

	Core neutron ($E_n > 100 MeV$)	halo neutron (R > 8cm at CsI Surface, $P_n > 2GeV/c)$	KL (At the exit of beam line)
KL line alone	$3.21 imes 10^8$	$(0.72 \pm 0.15) \times 10^4$	$(7.79 \pm 0.11) \times 10^{6}$
modified K1.1	$3.15 imes10^8$	$(1.17 \pm 0.19) \times 10^4$	$(7.77 \pm 0.11) \times 10^{6}$
original K1.1	$1.53 imes 10^8$	$(1.38 \pm 0.20) \times 10^4$	$(4.56 \pm 0.08) \times 10^{6}$

Effect Of Wider Hole

□ No change in beam size

