Progress Report to PAC5 J-PARC E06 Experiment (TREK) Measurement of T-violating Transverse Muon Polarization (P_T) in $K^+ \rightarrow \pi^0 \mu^+ \nu$ Decays J. Imazato June 6, 2007

1

- 1. Outline of the TREK experiment
- 2. Theoretical model descriptions of P_T
- 3. Funding and collaboration
- 4. Study of beamline
- 5. Progress of detector design and R&D
- 6. Plan for this year
- 7. Summary

Outline of the TREK experiment

• P_T is T-odd, and spurious effects from final state interaction are small: $P_T(FSI) < 10^{-5}$ Non-zero P_T is a signature of T violation.

• Standard Model (SM) contribution to P_T : $P_T(SM) < 10^{-7}$

 P_T in the range 10^{-3} ~ 10^{-4} is a sensitive probe of CP violation beyond the SM.

• There are theoretical models of new physics which allow a sizable P_T without conflicting with other experimental constraints.

P_{T} measurement

Use of upgraded E246 detector

 P_T measured as the azimuthal asymmetry A_{e^+} of the μ^+ decay positrons 5

Stopped beam method

Current limit from E246

 $P_{T} = -0.0017 \pm 0.0023(stat) \pm 0.0011(syst)$ (|P_{T}| < 0.0050 : 90% C.L.) Im \xi = -0.0053 \pm 0.0071(stat) \pm 0.0036(syst) (|Im \xi | <0.016 : 90% C.L.) Statistical error dominant

Expected sensitivity in TREK

We aim at a sensitivity of $\delta P_T \sim 10^{-4}$

• $\delta P_T^{\text{stat}} \sim 0.05 \, \delta P_T^{\text{stat}} (\text{E246}) \sim 10^{-4} : 1.4 \text{ x } 10^7 \text{ sec of runtime}$

K0.8 (K1.1-BR) for stopped *K*⁺

Use of T1 target sharing with K1.8 and KL
Macroscopic time sharing with K1.1 if it would be installed

• $I_{\rm K^+} = 2.1 \times 10^6$ /s @ 9 µA- 30 GeV protons on T1 • K/π ratio > 1.0 Theoretical model descriptions of P_T

Exotic scalar interactions

$$P_T = \mathrm{Im} \xi \cdot rac{m_\mu}{m_K} rac{|ec{p}_\mu|}{[E_\mu + |ec{p}_\mu| ec{n}_\mu \cdot ec{n}_
u - m_\mu^2/m_K]} .$$

Kinematic factor

• Generic four fermion interaction Lagrangian analysis

$$\mathrm{Im}\xi = \frac{(m_K^2 - m_\pi^2)\mathrm{Im}G_S^*}{\sqrt{2}(m_s - m_u)m_\mu G_F \sin\theta_C}$$

• Effective field theory with Wilson coefficients

$$P_{\perp} \sim \left[0.38 \Im \mathfrak{m} C_S^K - 0.27 rac{p_K \cdot (p_
u - p_\mu) + m_\mu^2/2}{M_K^2 (f_+/f_T)} \Im \mathfrak{m} C_T^K
ight] \left(rac{ ext{TeV}}{\Lambda}
ight)^2$$

	E246	TREK
ImGs / G _F	$< 2.2 \text{ x } 10^{-4}$	$< 1x \ 10^{-5}$
$ \mathbf{Im} \mathbf{C}_{\mathrm{S}} (\mathbf{\Lambda}/\mathrm{TeV})^2$	$\leq 2 \ge 10^{-3}$	$\leq 1 \ge 10^{-4}$

- Typical models with scalar interactions allowing a sizable P_T :
 - Multi-Higgs doublet model
 - SYSY with R-parity violation or large squark mixing

Three Higgs doublet model

$$L = (2\sqrt{2}G_F)^{\frac{1}{2}} \sum_{i=1}^{2} \{\alpha_i \bar{u_L} V M_D d_R H_i^+ + \beta_i \bar{u_R} M_U V d_L H_i^+ + \gamma_i \bar{\nu_L} M_E e_R H_i^+ \} + \text{h.c.},$$

• c.f.
$$d_n$$
, $b \rightarrow s\gamma \propto \text{Im}(\alpha_1 \beta_1^*)$, $(\alpha_1 \beta_1^*)$
 $\text{Im}(\alpha_1 \beta_1^*) = -v_2^2/v_3^2 \text{Im}(\gamma_1 \alpha_1^*)$
Higgs field v. e. v.

• $B \rightarrow X\tau v$ and $B \rightarrow \tau v$ at Super-Belle corresponds to $P_T < 3 \ge 10^{-4}$ c.f. TREK goal : $P_T \le 1 \ge 10^{-4}$

 P_T is most stringent constraint for $Im(\gamma_1\alpha_1^*)$!

SUSY with R-parity violation

Super potential : $W = W_{SMMS} + W_{RPV}$

 $W_{RPV} = \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k$

 $\operatorname{Im}\xi = \operatorname{Im}\,\xi^{l} + \operatorname{Im}\,\xi^{d}$

 P_T is a very stringent constraint for these parameters !

m̃ [GeV]

Direct CP violation

• Direct CP violation in
$$K^0$$
 system :
 $\operatorname{Re}(\varepsilon'/\varepsilon) = (1.66 \pm 0.26) \times 10^{-3}$

$$\xrightarrow{\Gamma(K^0 \to \pi^+ \pi^-) - \Gamma(\overline{K}^0 \to \pi^+ \pi^-)}_{\Gamma(\overline{K}^0 \to \pi^+ \pi^-) + \Gamma(\overline{K}^0 \to \pi^+ \pi^-)} = (5.04 \pm 0.22) \times 10^{-6} \equiv R$$

 If this effect is due to Higgs dynamics: Because there is no ΔI=1/2 suppression (~ 20) in the K⁺ system

$$P_T \sim R \times 20 = 5 \times 10^{-6} \times 20 \sim 10^{-4}$$

-- unless enhanced couplings to leptons! (I. Bigi, CERN Flavor WS, 2007)

Funding and collaboration

Comments from last PAC meeting

..... Overall the PAC is impressed with the progress of E06 and feels that this is an important measurement to be made at J-PARC. However, before recommending stage-2 approval, the PAC would like to see progress by the TREK collaboration in securing the funding for the experiment both internationally and domestically and in the collaborative effort with the E14 experiment to define and design workable beamlines for both the KL and K1.1 lines.

Status of TREK collaboration

	Table 5: TREK collaboration constituents					
Canada	University of Saskatchewan					
	University of British Columbia (UBC)					
	TRIUMF					
	University of Montreal					
U.S.A.	Massachusetts Institute of Technology (MIT)					
	University of South Carolina					
	Iowas State University					
	Hampton University					
	Jefferson Laboratory					
Japan	Osaka University					
	National Defense Academy					
	Tohoku University					
	High Energy Accelerator Research Organization (KEK)					
	Kyoto University					
	Tokyo Institute of technology (TiTech)					
Russia	Institute for Nuclear Research (INR)					
Vietnam	University of Natural Sciences					
Thailand	Kasetsart University					

• New participation:

- Kasetsart University
- Jefferson Laboratory
- Tokyo Institute of Technology

- Number of members:
 - 35 in Jan. '08 to 44 now
- Collaboration meetings:
 - Feb. 2006 @ KEK
 - Oct. 2006 @ MIT (USA)
 - Feb. 2007 @ KEK
 - Sep. 2007 @ U.Sask.(Canada)
 - Feb. 2008 @ KEK
 - Oct. 2008 @ USC (USA)
- International detector R&D
 - Target : Canada, USA
 - CsI(Tl) readout : Russia
 - Polarimeter : Japan

Study of beamline

K1.1-BR B1 combined magnet

- We proposed a combine function magnet for B1 to increase the beamline acceptance.
- Unfortunately, we found n = -6.75 is not feasible because of magnet saturation *etc*.

B1 condition	Acceptance	Bi construction	K1.1 operation	Conclusion
n = 0	100	feasible	possible	0.K.
n = -2.50	~100 (no gain)	feasible	difficult	no gain
n = -6.75	175	difficult	impossible	not good

n=0 solution for B1

- *n*=0 is the only possible solution under the conditions of:
 - 1. 1.1 GeV/c operation in the future
 - 2. Already fixed beamline space near T1
- Shim was optimized to realize the maximum horizontal width.
- We will pursue the Q6 aperture improvement in order to increase the acceptance even by a small amount.

Comments on the K_L beam

- A 3-cm diameter or square hole in the B1 yoke does not disturb the B1 field quality : no problem
- To accommodate a similar size of the K_L beam path in B2, a special type of window-frame magnet will be required : no problem
- Q1 and Q2 will have such a yoke structure to avoid the K_L beam path : no problem

Vacuum vessel

The installation position accuracy of B1 in the vacuum vessel will be a few 100 µm.

Progress in detector R&D

Progress reported to PAC3 and PAC4

- High rate performance :
 - GEM prototype beam test at FNAL
 - CsI(Tl) APD readout beam test at LNS Tohoku (1)
 - Target MPPC rad. hardness test at RCNP (3)
- Polarimeter muon stopper material :
 - μSR experiment (E1120) at TRIUMF
- Systematic error MC studies :
 - Errors associated with polarimeter misalignments (2)
 - Back ground suppression

Since then:

- (1) Analysis of pileup events was continued
- (2) MC analysis with high statistics was performed
- (3) A more realistic test is now planned at TRIUMF

CsI(TI) readout test at LNS (Tohoku)

Test of an E246 prototype module with a variable-energy *e*⁺ beam
High rate test analysis at Tohoku and INR(Russia)

Basic performance

$$Erf(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} dt$$

Careful treatment of overshoot and ringing is necessary

Analysis of pile-up events

- Separation of two pulses-

Analysis efficiency of the first pulse

• For pileup pulses with pulse separation larger than 40 bins (0.8 µs), the analysis efficiency is 100%.

• For the separation smaller than 60 bins (1.2 µs), there is an influence on the signal area analysis.

Most serious systematic error

- Analysis with MC simulations -

e⁺ asymmetry due to polarimeter misalignment

	Rotation about				
Component	<i>r</i> -axis	z-axis			
Polarimeter	\mathcal{E}_r	\mathcal{E}_{z}			
Muon field	δ_r	δ_{z}			

fwd - **bwd** : vanishes for \mathcal{E}_r , \mathcal{E}_z , δ_r when *t*-integrated

fwd - bwd: does not vanish for δ_z !

 Innovative analysis method to separate misalignment effects²⁷

Misalignment analysis using $K_{\mu3}$

Asymmetry analysis in terms of θ_0 : in plane spin angle from *z*-axis

 Δδ_z ~ Δδ_r ~ 3×10⁻⁴ for misalignment determination
 P_T = 0 and δ_z = δ_r = 5° = 87 mr (for systematic error test) ==> δP_T = (2±7)×10⁻⁴ for 10⁸ events

Result of high statistics MC simulation

- Within the statatistical error, no bias was found in the analysis including the used analysis code.
- Final systematics check will be done by using the final analysis code together with the real data analysis later.

Plan for this year

Detector preparation (1) Active muon polarimeter

Gap wire chambers

Number of plates	31
Plate material	Al, Mg or alloy
Plate thickness	~ 2.5 mm
Plate gap	~ 8 mm
Ave. density	$0.24 \rho_{Al}$
μ^+ stop efficiency	~ 85%

Muon field magnet

Parameter	Value
В	0.03 T
Gap	30 cm
Pole face	$60~{ m cm}^H \! imes 40~{ m cm}^W$
\mathbf{MMF}	$7.2 \text{ (or } 3.6) \times 10^3 \text{A} \cdot \text{turn/coil}$
Number of coils	12 (or 24)
Coil size	$5 imes 10 ~({ m or}~5)~{ m cm}^2$
Power	500 (250) W /coil
Total power	6 kW
Cooling	indirect water cooling
Total weight	5 ton

Polarimeter chamber prototype

- Several-layer prototype to test basic DC performance
- One sector full-size prototype to test the polarimeter performance

Item			FY 2008						FY 2009			
		Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	
Several-layer prototype	Chamber	design	constru	ction	test							
	Electronics		Percha	se	test							
	Chamber	d		lesign		construction			beam test			
(full size)	Electronics					de	sign	const	truction	test	beam test	Beam test at
Muon field magnet			field	calc.	design		construction		field n	nap	TRIUMF	

2009 : Muon beam test of the full-sized model at TRIUMF 2010 : Mass-production of 11 or 12 chambers

At the moment : DC cell structure design in Japan and Canada
Baseline design : Cell width= 8 mm, Half cell length = 8 mm

Detector preparation (2) Active fiber target

MPPC radiation damage test

	Particle	Energy	Exposure	Flux density	
TREK exp. condition	$\pi^+, K^+, \mu^+, e^{\pm}, n$	< 200 MeV/c		7x10 ⁷ /mm ² for one year	
PCNP proton test (*)	0	53 3 MoV	8 Gy : tolerated	5.4 x10 ⁷ /mm ²	
RGNP proton lest	ρ	55.5 IVIEV	21 Gy : dead	14 x 10 ⁷ /mm ²	
Reactor neutron test	п	low	similar to <i>p</i>		
TDU IME biop toot		1001401//0			
I RIUMF pion test	π^+, μ^+, e^\pm	TUUIVIeV/C			

(*) TREK members took part in the test measurement.

- Use of MPPC (HPK S10362 -050) is marginal?
 - We suggested the use of Multi-anode PMT instead.
 - MPPC is still attractive.
- We will perform a test experiment at TRIUMF in July.
 - Using a pion beam with more realistic condition for TREK
 - 130k π^+ /s/mm² amounting 10⁸/mm² in several hours
- According to the results of the test, we will decide finally:
 - MPPC or MA-PMT
 - Distance from the beam and necessary shielding

Summary

- We have emphasized that P_T physics is important. We want to start the TREK experiment in the early stage of J-PARC.
- We have succeeded to obtain grants for the TREK experiment, at least partially. Now we can start the construction of :
 - Active polarimeter, and the
 - Scintillating fiber target
- We have shown that the most dangerous systematics from the polarimeter misalignment should be controllable.
 - Answering the one-year-standing question by PAC
- We are continuing detector R&D such as the CsI(Tl) readout and showed the proposed plan for this year.
- We want to accelerate the detector design/construction by gaining further grants internationally and domestically. For this the stage-2 approval status is definitely necessary.

End of Slides