J-PARC Experimental Proposal P21:

An Experimental Search For Lepton Flavor Violating μ^{-} - e^{-} Conversion at Sensitivity of 10⁻¹⁶ with a Slow-Extracted Bunched Beam

Yoshitaka Kuno Osaka University

January 7th, 2008 J-PARC PAC Meeting

charged Lepton mixing

Outline

- Physics Motivation of Lepton Flavor Violation (LFV) for Charged Leptons
- µ-e conversion and Experiments
 - What is a μ -e conversion ?
 - Experimental Status
- A New Experiment at J-PARC
 - Overview
 - The Muon Beam
 - The Detector
 - Signal Sensitivity and Backgrounds
 - Possible Layout and Plan
- Summary

Physics Motivation of Lepton Flavor Violation for Charged Leptons

Lepton Flavor Violation of Charged Leptons (Charged Lepton Mixing)

Neutrino Mixing (confirmed)

Charged Lepton Mixing (not observed yet)

 What is The Contribution to Charged Lepton Mixing from Neutrino Mixing ?

Very Small (10⁻⁵²)

Sensitive to new Physics beyond the Standard Model

Various Models Predict Charged Lepton Mixing.

LFV in SUSY Models

an example diagram

 $ilde{
u}_{\mu}$

$$\frac{B(\mu N \to eN)}{B(\mu \to e\gamma)} \sim \frac{1}{200}$$

(photon being attached to quarks in nucleons)

The decay rates is determined by SUSY-mass scale but the dot includes higher energy information.

μ

Through quantum corrections, LFV could access ultra-heavy particles such as v_R (~10¹²-10¹⁴ GeV/c²) and GUT that cannot be produced directly by any accelerators.

P

 $\tilde{\nu}_e$

SUSY GUT and SUSY Seesaw

SUSY Predictions for LFV with Muons

SU(5) SUSY GUT

SUSY Seesaw Model

Energy Frontier, SUSY, and Charged Lepton Mixing

- In SUSY models, charged lepton mixing is sensitive to slepton mixing.
- LHC would have potentials to see SUSY particles.
 However, at LHC nor even ILC, slepton mixing would be hard to study in such a high precision as proposed here.

- Slepton mixing is sensitive to either (or both) Grand Unified Theories (SUSY-GUT models) or neutrino seesaw mechanism (SUSY-Seesaw models).
- If LFV sensitivity is extremely high, it might be sensitive to multi-TeV SUSY which LHC cannot reach, in particular SUSY models.

µ-e Conversion and Experiments

1s state in a muonic atom

Neutrino-less muon nuclear capture (=µ-e conversion)

$$\mu^- + (A,Z) \twoheadrightarrow e^- + (A,Z)$$

lepton flavors changes by one unit.

nuclear muon capture

$$\mu^- + (A, Z) \longrightarrow \nu_\mu + (A, Z - 1)$$

$$B(\mu^{-}N \rightarrow e^{-}N) = \frac{\Gamma(\mu^{-}N \rightarrow e^{-}N)}{\Gamma(\mu^{-}N \rightarrow vN')}$$

What is a μ -e Conversion ?

Comparison between $\mu \rightarrow e\gamma$ and $\mu - e$ Conversion (Physics sensitivity)

Photonic and non-photonic (SUSY) diagrams

µ-e Conversion Signal and Backgrounds

$$\mu^- + (A,Z) \twoheadrightarrow e^- + (A,Z)$$

Signal

 single mono-energetic electron

$$m_{\mu} - B_{\mu} \sim 105 MeV$$

coherent process (the same initial and final nucleus)

$$\propto Z^5$$

Backgrounds

- Muon decay in orbit
 - Endpoint comes to the signal region $\propto (\Delta E)^5$

- Radiative pion capture
 - pulsed beam required
 - wait until pions decay.
- Electrons from muon decays in flight
- Cosmic rays
- and many others

The SINDRUM-II Experiment (at PSI)

SINDRUM-II used a continuous muon beam from the PSI cyclotron. To eliminate beam related background from a beam, a beam veto counter was placed. But, it could not work at a high

rate

Published Results

The MELC and MECO Proposals

MELC (Russia) and then MECO (the US)

 To eliminate beam related background, beam pulsing was adopted (with delayed measurement).

•To increase a number of muons available, pion capture with a high solenoidal field was adopted.

•For momentum selection, curved solenoid was adopted.

Mu2E @ Fermilab

- The mu2e Experiment at Fermilab.
 - EOI and LOI have been submitted. It is well accepted.
 - After the Tevatron shut-down.
 - use the antiproton accumulator ring and the debuncher ring to manipulate proton beam bunches.
 - running with Nova.
 - with Project-X in future.

Fermilab Accelerators

New Experimental Proposal at J-PARC

Overview of the COMET Experiment (COherent Muon to Electron Transition)

Sensitivity Goal

$$B(\mu^- + Al \to e^- + Al) < 10^{-16}$$

The Muon Source

Proton Beam (1)

- A pulsed proton beam is needed to reject beam-related prompt background.
 - Detection will be made between pulses (delayed measurement).
- Time structure required for proton beams.
 - Pulse separation is ~ 1µsec or more (muon lifetime).
 - Narrow pulse width (<100 nsec)

- Pulsed beam from slow extraction.
 - fill every other rf buckets with protons and make slow extraction with keeping bunches
 - spill length (flat top) ~ 0.7 sec
 - good to be shorter for cosmic-ray backgrounds.

Proton Beam (2) - 2 SSC years

- Proton Extinction :
 - (delayed)/(prompt)<10⁻⁹
 - Test done at BNL-AGS gave 10⁻⁷ (shown below).
 - Extra extinction devices are needed.

- Required Protons :
 - 8 x 10²⁰ protons of 8 GeV in total for a single event sensitivity of about 0.3 x 10⁻¹⁶.
 - For 2 x 10⁷ sec running, 4 x 10¹³ protons /sec (= 7 μ A).
 - A total beam power is 56 kW, which is about 1/8 of the J-PARC full beam power of 450 kW (30 GeV x 15µA).

Pion Capture

 A large muon yield can be achieved by large solid angle pion capture by a high solenoid field, which is produced by solenoid magnets surrounding the proton target.

 $P_T(GeV/c) = 0.3 \times B(T) \times (\frac{R(m)}{2})$ • B=5T,R=0.2m, P_T=150MeV/c.

- Superconducting Solenoid Magnet for pion capture
 - 15 cm radius bore
 - a 5 tesla solenoidal field
 - 30 cm thick tungsten radiation shield
 - heat load from radiation
 - a large stored energy

Muon Transport Beamline

- Muons are transported from the capture section to the detector by the muon transport beamline.
- Requirements :
 - long enough for pions to decay to muons (> 20 meters \approx 2x10⁻³).
 - high transport efficiency (P_µ~40 MeV/c)
 - negative charge selection
 - low momentum selection (P_µ<75 MeV/c)
- Straight + curved solenoid transport system is adopted.

Charged Particle Trajectory in Curved Solenoids

• A center of helical trajectory of charged particles in a curved Drift in a Curved Solenoid Solenoidal field is drifted by

$$D = \frac{p}{qB} \theta_{bend} \frac{1}{2} \left(\cos \theta + \frac{1}{\cos \theta} \right)$$

- D : drift distance
- B: Solenoid field
- θ_{bend} : Bending angle of the solenoid channel
- *p* : *Momentum of the particle*
- q : Charge of the particle
- θ : $atan(P_T/P_L)$
 - This effect can be used for charge and momentum selection.

 This drift can be compensated by Vertical Completion Sation Magnetic Field drift direction given by

$$B_{comp} = \frac{p}{qr} \frac{1}{2} \left(\cos \theta + \frac{1}{\cos \theta} \right)$$

p: Momentum of the particle q: Charge of the particle r: Major radius of the solenoid θ : atan(P_T/P_L)

F

Tilt angle=1.43 deg.

Spectra at the End of the Muon Transport

- Preliminary beamline design
 - main magnetic field
 - compensation field
 - radius of magnets (200 mm)
- Transport Efficiency

# of muons /proton	0.0071
# of stopped muons /proton	0.0018
# of muons of p _µ >75 MeV/c /proton	2x10 ⁻⁴

Spectra at the end of the beamline

(top left) total momentum
(top right) direction angles to beam axis
(bottom left) time of flight
(bottom right) beam profile
muons for open histograms, pions for hatched
histograms.

The Detector

~100 MeV electrons.

Detector Components

a muon stopping target, curved solenoid,tracking chambers, and a calorimeter/trigger and cosmic-ray shields.

Transmission of the Electron Transport

Acceptance 5.0 7.0 Electron Transport System Parameters (preliminary) Ratio of a number of • Radius : 50 cm electrons reaching the Magnetic field : 1 Tesla 0.3 end of transport to all • Bending angle : 180 degrees electrons emitted in 4π . 0.2 Geometrical Acceptance 0.1 Solid angel at the target : 0.73 mirror effect at a graded 80 100 20 40 60 Momentum (MeV/c) field • Transport efficiency : 0.44 survival rate DIO/Stopping-µ (a) 10⁻¹ • Total : 0.32 10⁻² 10 Suppression of electrons from **10**⁻⁴ 10 decay in orbit. 10 $\begin{array}{c} 0 \\ 10 \\ 10 \\ 10 \end{array}$ **10⁻⁶** • about 10⁻⁸ suppression 10⁻⁸ 10 2T-1T • about 1000 tracks / sec for 10 **10⁻¹⁰** 10¹¹ stopping muons. 10 10⁻¹ 10 20 40 60 80 100 90 100 80 50 60 70 40 Eth (MeV) R(cm)

Electron Detection (preliminary)

Straw-tube Trackers to measure electron momentum.
should work in vacuum and under a magnetic field.
A straw tube has 25µm thick, 5 mm diameter.
One plane has 2 views (x and y) with 2 layers per view.
Five planes are placed with 48 cm distance.

•250µm position resolution.

Under a solenoidal magnetic field of 1 Tesla.

In vacuum to reduce multiple scattering.

Signal Acceptance

• The signal acceptance is given by the geometrical acceptance of the detector and the analysis (cut) acceptance.

Items	Acceptance	
geometrical		
solid angle at target	0.73	
transport efficiency	0.44	
analysis		
pt > 52 MeV/c cut	0.67	
chi2 cut	0.86	
energy cut	0.56	
time window cut	0.38	
total	0.04	

signal energy window (104.0-105.2 MeV in uncorrected energy scale)

Sensitivity and Backgrounds

Signal Sensitivity (preliminary) - 2 SSC years

• Single event sensitivity

$$B(\mu^- + Al \to e^- + Al) \sim \frac{1}{N_\mu \cdot f_{cap} \cdot A_e}, \qquad \qquad \text{beam line optimization} \rightarrow \text{improvement of x2.7}$$

- N_μ is a number of stopping muons in the muon stopping target. It is 1.5x10¹⁸ muons.
- f_{cap} is a fraction of muon capture, which is 0.6 for aluminum.
- total protons8x1020muon transport efficiency0.0071muon stopping efficiency0.26# of stopped muons1.5x1018

Tungsten target &

• A_e is the detector acceptance, which is 0.04.

$$B(\mu^{-} + Al \to e^{-} + Al) = \frac{1}{1.5 \times 10^{18} \times 0.6 \times 0.04} = 2.8 \times 10^{-17}$$
$$B(\mu^{-} + Al \to e^{-} + Al) < 5 \times 10^{-17} \quad (90\% \text{ C.L.})$$

Potential Background Events

- Background rejection is the most important in searches for rare decays.
- Types of backgrounds for $\mu^+ N \rightarrow e^+ N$ are,

Intrinsic backgrounds	originate from muons stopping in the muon stopping target.	 muon decay in orbit radiative muon capture muon capture with particle emission
Beam-related backgrounds	caused by beam particles, such as electrons, pions, muons, and anti-protons in a beam	 radiative pion capture muon decay in flight pion decay in flight beam electrons neutron induced antiproton induced
Other backgrounds	caused by cosmic rays	 cosmic-ray induced pattern recognition error

Intrinsic Background (from muons)

- Muon Decay in Orbit
 - Electron spectrum from muon decay in orbit
 - Response function of the spectrometer included.
 - 0.05 events in the signal region of 104.0 105.2 MeV (uncorrected).
- Radiative Muon Capture with Photon Conversion

 $\mu^- + Al \to \nu_\mu + Mg + \gamma$

- Max photon energy 102.5 MeV
- < 0.001 events
- Muon Capture with Neutron Emission
- Muon Capture with Charged Particle Emission
 - <0.001 events for both.</p>

Energy spectrum of electrons from decays in orbit in a muonic atom of aluminum, as a function of electron energy. The vertical axis shows the effective branching ratio of μ -e conversion.

DIO Background

Beam Related Background Rejection

Rejection of beam related (prompt) backgrounds can be done by a combination of the following components.

Momentum Selection at the Muon Transport $(p_{\mu} < 75 \text{ MeV/c})$

Electron Energy Cut (104.0 - 105.2 MeV uncorrected)

Electron Transverse Momentum Cut (p_T> 52 MeV/c)

Timing Cut and Beam Extinction (10⁻⁹)

Beam Channel Length (pion decay)

Background Rejection Summary (preliminary)

	Backgrounds	Events	Comments
(1)	Muon decay in orbit Radiative muon capture Muon capture with neutron emission Muon capture with charged particle emission	0.05 <0.001 <0.001 <0.001	230 keV resolution
(2)	Radiative pion capture* Radiative pion capture Muon decay in flight* Pion decay in flight* Beam electrons* Neutron induced* Antiproton induced	0.12 0.002 <0.02 <0.001 0.08 0.024 0.007	prompt late arriving pions for high energy neutrons for 8 GeV protons
(3)	Cosmic-ray induced Pattern recognition errors	0.10 <0.001	10 ⁻⁴ veto & 2x10 ⁷ sec run
	Total	0.4	

Layout at J-PARC NP Hall

Possible Layout at the NP Hall

Cost Estimation

Item	Cost (MJPY)
$MR modification^{1)}$	130
External Extinction Device	230
Production Target & Shield	190
Superconducting Solenoid ²⁾	$2,\!420$
Pion Capture Solenoid	(870)
Curved Muon Transport Solenoid	(360)
Muon-Stopping Target Solenoid	(530)
Curved Solenoid Spectrometer	(370)
Detector Solenoid	(290)
SC Solenoid Extension $(20 \text{ m})^{3}$	380
Tracking Detector	110
Electron Calorimeter	160
Cosmic Ray Shield	570
Data Acquisition and Trigger	50
Installation and Integration	200
Total	4,440

Schedule (preliminary)

Funding starting					
1st year	2nd year	3rd year	4th year	5th year	6th year
design & order of SC wires	construction		engineering run	physics run	

Summary

- We propose a new experiment of searching for coherent neutrinoless conversion of muons to electron (μ-e conversion) at a sensitivity of 10⁻¹⁶. This sensitivity is a factor of 10,000 better than the current experimental limit.
- The experiment COMET (COherent Muon to Electron Transition) would offer powerful opportunity for new physics phenomena beyond the Standard Model.
- The experiment is planned to carry out in the J-PARC NP Hall by using a bunched proton beam slowly-extracted from the J-PARC main ring.
- This initiative has been taken to achieve an early and timely start of the searches in terms of international competition.

End of My Talk

Backup Slides

PRISM Project in Japan

- •without a muon storage ring.
- with a slowly-extracted pulsed proton beam.
- doable at the J-PARC NP Hall.
- regarded as the first phase / MECO type
- Early realization

$B(\mu^- + Ti \to e^- + Ti) < 10^{-18}$

- with a muon storage ring.
- with a fast-extracted pulsed proton beam.
- •need a new beamline and experimental hall.
- •regarded as the second phase.
- •Ultimate search