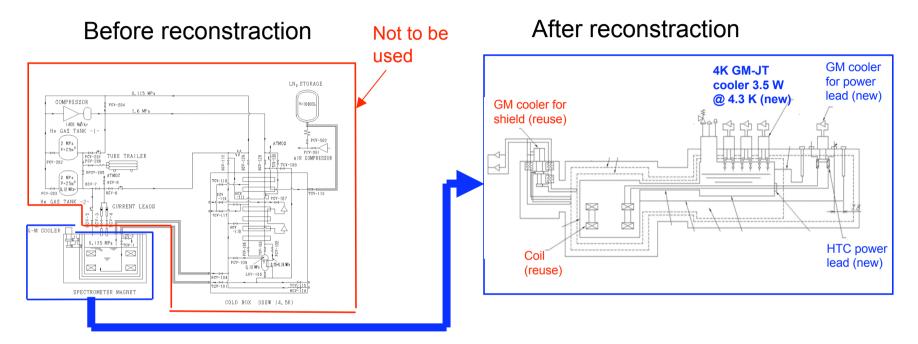
6-July-2007, 3rd J-PARC PAC

SKS Status Report

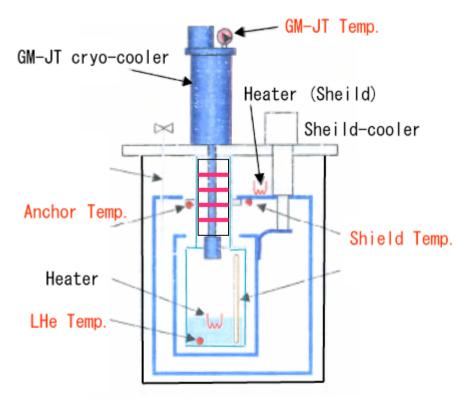

Tomofumi Nagae, Spokesperson of E05

Outline

- SKS Magnet & Ref. System
- New Dipole Magnet
- Beamline MWPC & Readout system
- SKS Detectors
 - SKS, SKS+, SKS- Configurations
- Collaboration

SKS Magnet

Modification of Cooling System

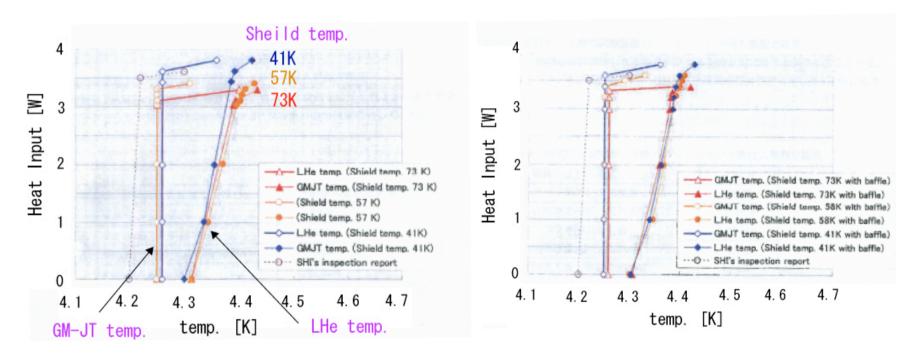

- 300W He refregirator
 - Cold Box
 - (Medium) Compressor
 - He Transfer line
 - LN₂ storages
 - etc...
- Cu current leads

Head load (operation) ~ 5W

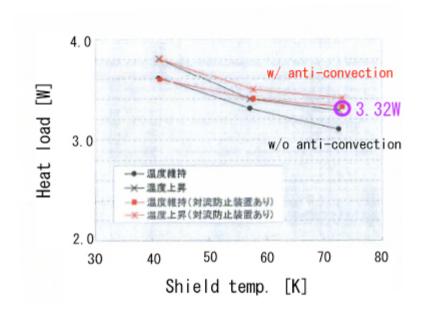
- 3.5W GM-JT cryo-cooler x 3 • shield cooler
- HTC current leads
 with GM cryo-cooler

can maintain liquid state of He

Measurement of cooling power of GM-JT cryo-cooler (FY2006)



- Cooling power of GM-JT
 - vs shield temp
 - w or w/o anti-convection device


Results

w/o anti-convection device

w/ anti-convection device

Summary

Cooling power depends on the shield temp.

- 3.1W(71K) -> 3.6W(41K)
- add a shield cryo-cooler

Anti-convection is effective.

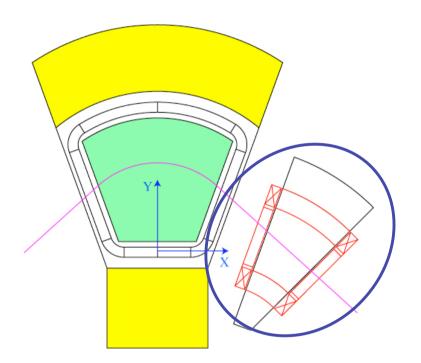
at high shield temp.

Cooling power > 3.32W

Three GM-JT cryo-coolers

SKS magnet reconstruction plan 1

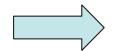
- Modification of cooling system and transportation to J-PARC (FY2007-2008)
 - 8/24 Bidding, 12/25(2008) Finish 168M Yen
 - Modification of cooling system and coil vessels
 - de-assemble of the yoke
 - re-assemble of the yoke and coil etc.
 - cooling test at the factory
- Fabrication of GM-JT cryo-coolers (FY2007-2008)
 - In preparation of doc. 4/25(2008)
 - 2 cyro-coolers and 1 compressor, etc..


30M Yen

SKS magnet reconstruction plan 2

- FY2007
 - disconnection of power and monitor line, etc.
 - purchase of supplying goods (shield cooler,,)
- FY2008
 - connection of power, signal and gas lines
 - construction of interlock and monitor system
 - cooling and excitation test at J-PARC site
 (2008 Feb. Mar.)

New Dipole Magnet

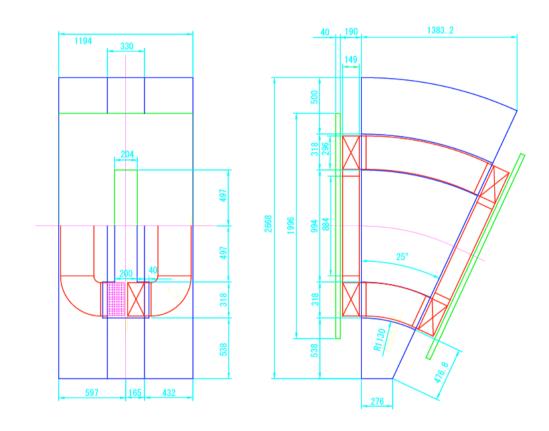

Dipole magent for SKS+

- Reused magnet yoke
- 20cm gap
- •~1.5 Tesla
- Window frame type

Additional dipole magnet may affect SKS coils and their support.

Estimation of electromagnetic force by "ANSYS" code

Results (w/o end-gaurd)


		SksDMag200A7 (1/2 Model)		SksDMag200A8 (1/4 Model)		TOSCA (Toshiba)	
		Fx [ton]	Fy [ton]	Fx [ton]	Fy [ton]	Fx [ton]	Fy [ton]
Only SKS	Coil	1.46	12.11	0.00	22.82	0.54	18.75
	Yoke	1.67	-18.32	0.00	-19.57	0.39	-25.74
	Total	3.13	-6.21	0.00	3.26	0.92	-6.99
No Excitation	Coil	1.43	12.00	0.50	22.72	-1.26	1772
	Yoke	1.88	-18.30	0.02	-19.55	1.11	-30.12
	Total	3.31	-6.30	0.52	3.17	-0.15	-12.40
	dC	-0.03	-0.11	0.50	-0.10	-1.80	-1.03
	dY	0.21	0.02	0.02	0.01	0.72	-4.38
	dT	0.18	-0.09	0.52	-0.09	-1.08	-5.41
Excitation	Coil	0.33	12.87	-2.12	23.60	-2.56	18.46
	Yoke	1.38	-18.31	0.22	-19.57	0.82	-30.06
	Total	-1.42	0.77	-1.90	0.77	-1.74	-11.60
	dC	-1.13	0.76	-2.12	0.78	-3.10	-0.29
	dY	-0.29	0.01	0.22	-0.01	0.43	-4.32
	dT	-1.42	0.77	-1.90	0.77	-2.66	-4.61

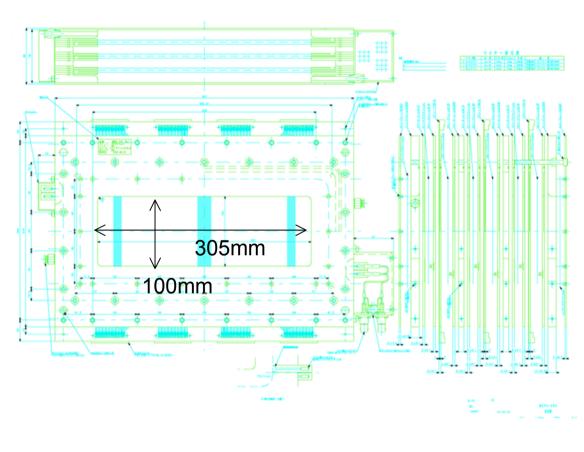
Results (w/ end-guard)

		w/o EG		w/ EG(4cm)	
		Fx [ton]	Fy [ton]	Fx [ton]	Fy [ton]
Only SKS	Coil	-5.96	41.52		
	Yoke	0.85	-21.38		
	Total	-5.11	20.14		
No	Coil	-5.97	41.39	-5.87	41.28
Excitation	Yoke	1.07	-21.36	1.29	-21.38
	Total	-4.90	20.03	-4.58	19.90
	dC	-0.01	-0.13	0.09	-0.24
	dY	0.22	0.02	0.44	0.00
	dT	0.21	-0.11	0.53	-0.24
Excitation	Coil	-7.07	42.30	-6.43	41.88
	Yoke	0.56	-21.35	0.84	-21.40
	Total	-6.51	20.95	-5.59	20.48
	dC	-1.11	0.78	-0.47	0.36
	dY	-0.29	0.03	-0.01	-0.02
	dT	-1.40	0.81	-0.48	0.34

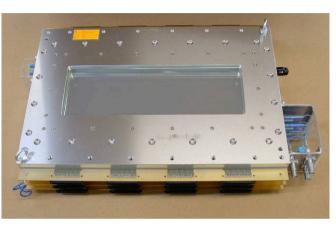
End guard can reduce the force to $\sim \frac{1}{2}$.

Present Design

Gap 20cm 96 turns/Coil 1.5 T @ 2000A

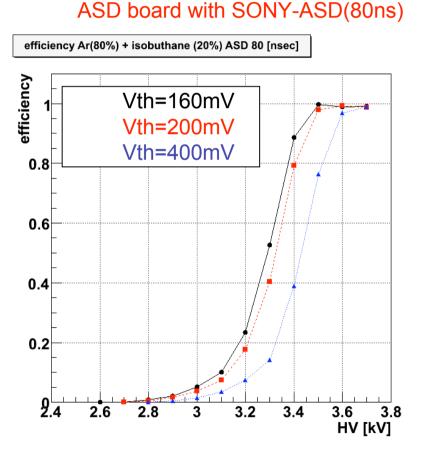

Power Supply 2000A-135V (320kW)

Cooling water 7/Coil 230 L/min. @ 1.0MPa


will be fabricated in 2007FY by Grand-In-Aid

Beamline MWPC

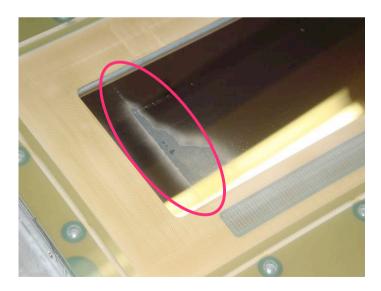
1mm MWPC

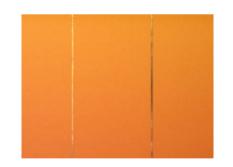

32ch. half-pitch readout connector

- $15\mu m\phi$ anode wire
- 1mm A-A spacing
- 3mm A-Cathode gap
 - 256 ch./plane
 - X-U-V (half-size)
 - ±15° for U and V

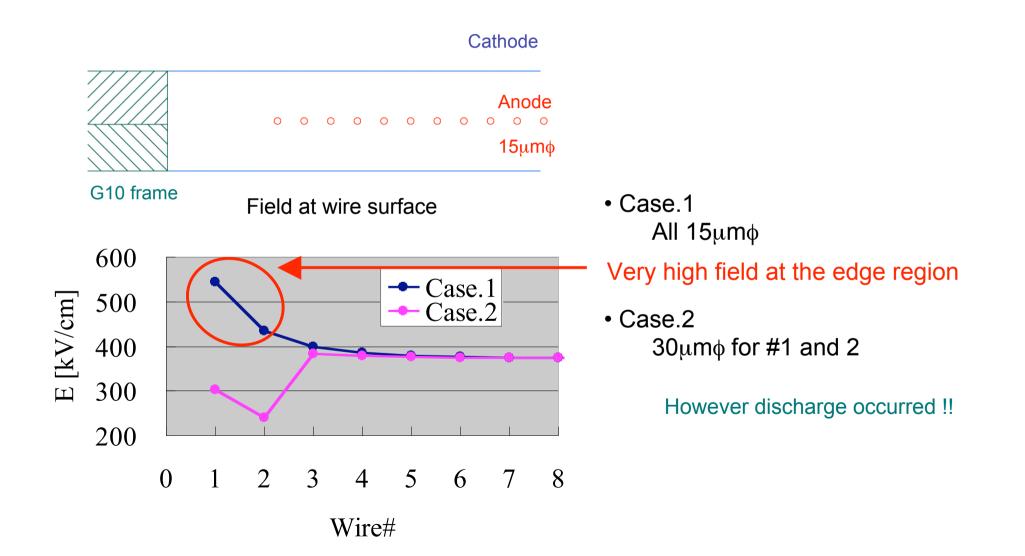
Efficiency measurements with ⁹⁰Sr/Y source

$Ar(80):iso-C_4H_{10}(20)$ gas


SONY-ASD(16ns)


efficiency Ar(80%) + isobuthane (20%)

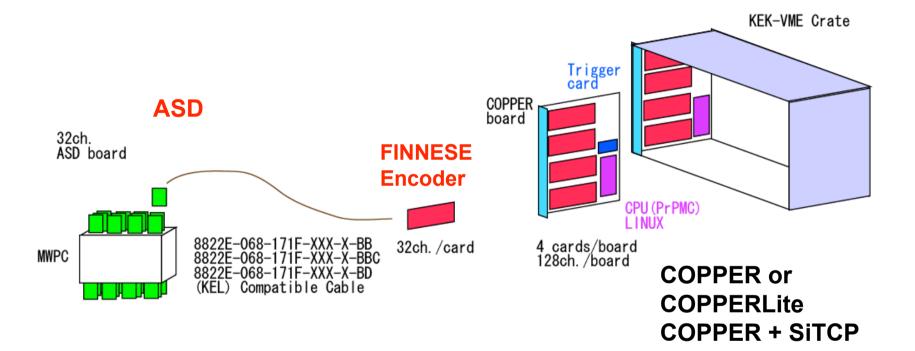
only 16 channels sum

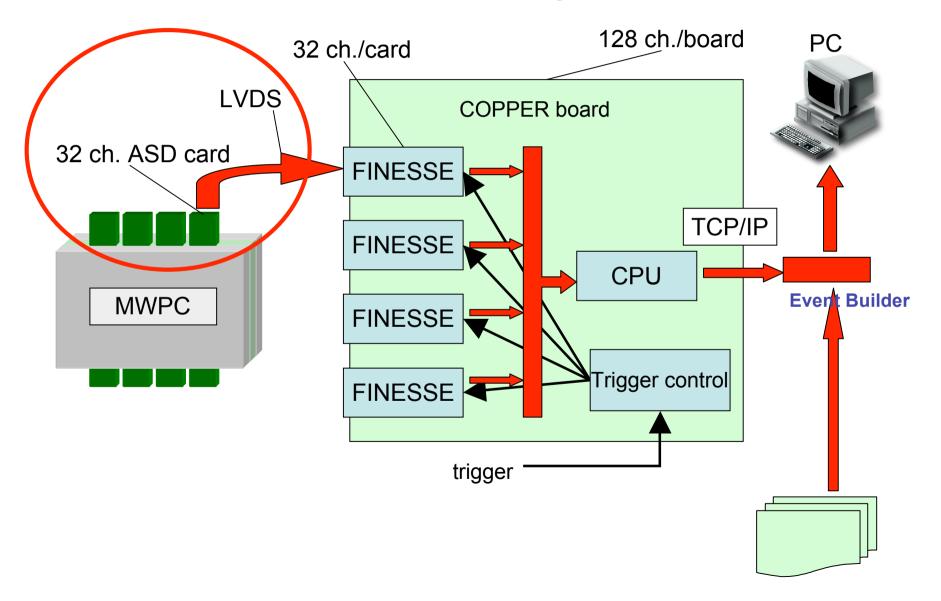

Discharge Problem

- Discharge occurs at the edge region around the plateau region ~3.0-3.5 kV.
- Once discharge occurs, the surface of cathode conductor is damaged.

Discharge at the edge region

Improved configuration to avoid discharge & cathode damages


Cathode


G10 frame

- The egde wire is covered by G10.
- Wire dia. $15\mu m \rightarrow 12.5\mu m$
- Cathode material Aramid(6µm)+Al (Present) PET(12µm)+Al PET+Carbon ?

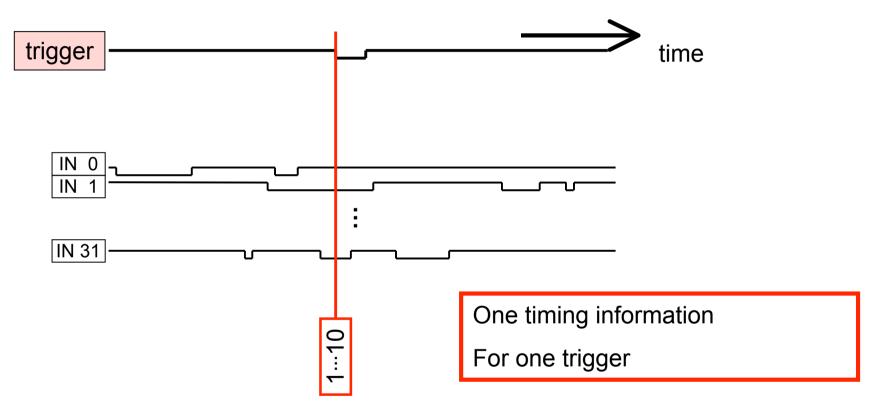
MWPC Readout

Readout System

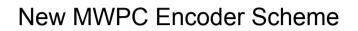
ASD board

- 32ch./board
- SONY ASD chip with 80ns
- LVDS output
- +3.3V, -3.0V

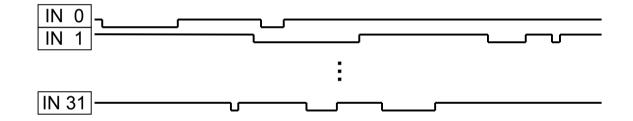
20 boards were fabricated for test.

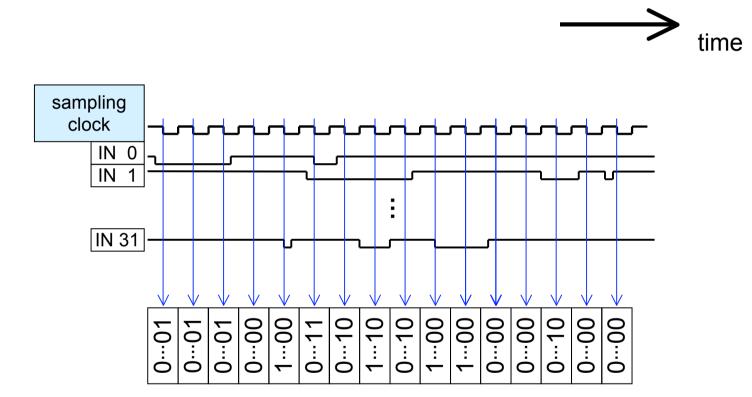

- 1. We have enough number of 80ns chip
- 2. We will obtain 16ns chips (1.8K, 4.8Kch.) this year
- 3. Another ASD chips are under development by 測定器開発室

4ch./board gain programmable half-swing pECL output +5V

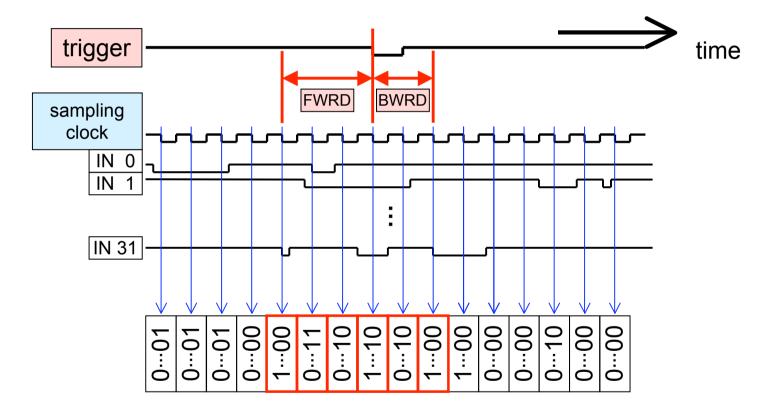

MWPC Encorder

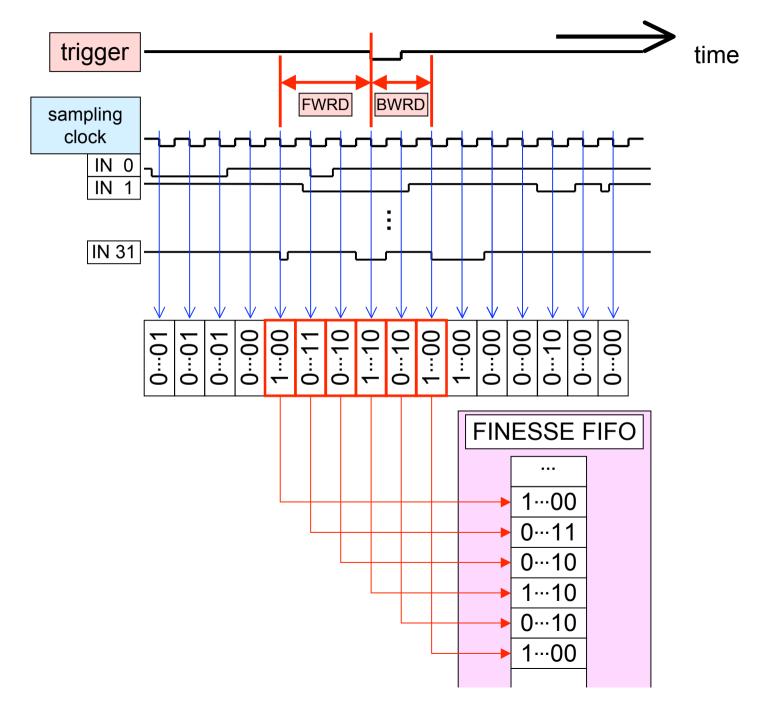
- 32ch. / card
- 4 cards / COPPER board
- acceptable signal
 - LVDS
 - ECL
 - pECL





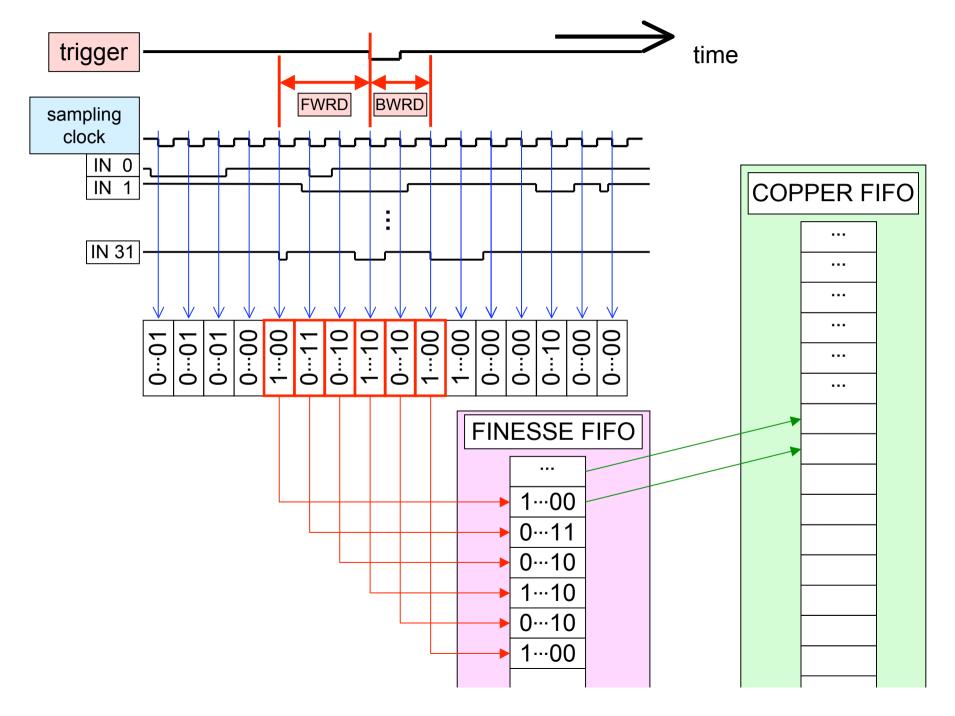
Traditional MWPC encoder scheme



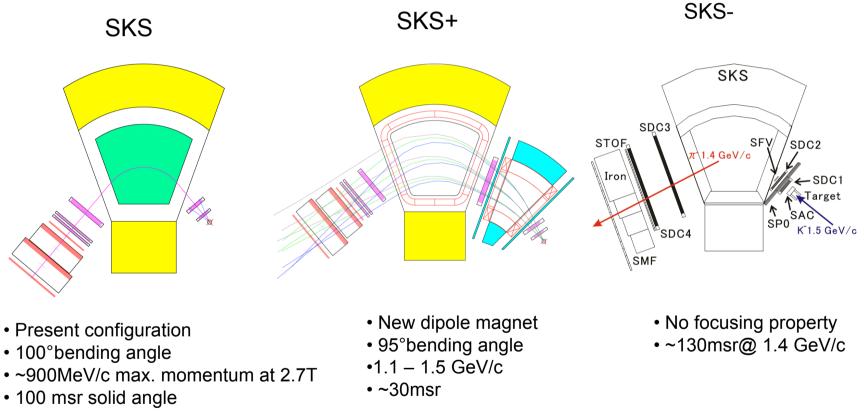


New MWPC Encoder Sceme

New MWPC Encoder Scheme


New MWPC Encoder Scheme

MWPC Readout Status


- Basic operation and performance were checked for encoder card.
- Beam test will be done July 10, 2007.
- Minor bug of the firmware was found.
- COPPER boards, FINNESE encoder cards, trigger board, and crates were already fabricated.
- CPU or SiTCP is needed. (not COPPER-Lite)

New MWPC Encoder Scheme

SKS Detectors

Three Modes of SKS

best resolution was achieved at 2.2T

E19, E10-1 E10-2, E18 E05

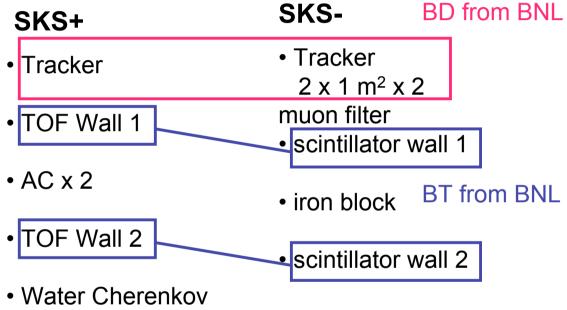
E13

Upstream Chambers

	SKS	SKS+	SKS-
1 st Chamber	250 ^H x120 ^V mm ²	250 ^H x120 ^v mm ²	~400 ^H x200 ^V mm ²
# of layers	4 or 6	4 or 6	4 or 6
High rate	Yes(Ultra)	Yes	Yes
2 nd Chamber	400 ^H x200 ^V mm ²	400 ^н x200 [∨] mm²	~550 ^H x200 ^V mm ²
# of layers	6	6	4
High rate	Yes	Yes	Yes(Medium)
3 rd Chamber		1100 ^н x300 [∨] mm²	
# of layers		3 or 4	
High rate		No	

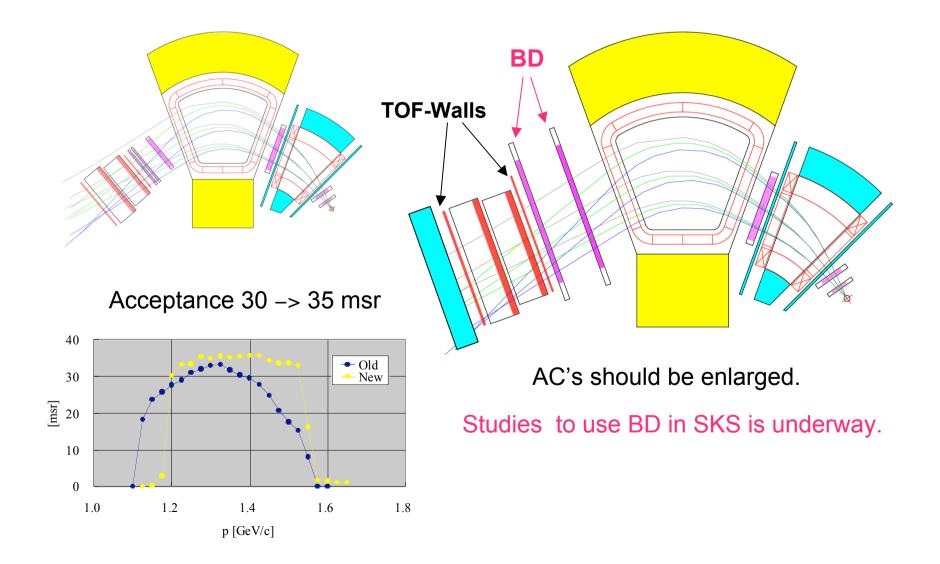
E03 (E07) requires a 400x250 mm² high-rate chamber

Upstream Chambers


	SKS	SKS+	SKS-
1 st Chamber	250 ^H x120 ^V mm ²	250 ^н x120 ^v mm²	~400 ^H x200 ^V mm ²
-	4 or 6 3mm DC	4 or 6	4 or 6
High rate	Yes(Ultra) ^{mm PC}	Yes 3mm DC(BC)	Yes 3mm DC
2 nd Chamber	400 ^H x200 ^V mm ²	400 ^н x200 [∨] mm²	~550 ^H x200 ^V mm ²
# of layers	6 2mm DC	6 3mm DC	4
High rate	Yes 3mm DC	Yes	Yes(Medium)
3 rd Chamber		1100 ^н x300 [∨] mm²	existing
# of layers		3 or 4	5mm DC
High rate		No	

E03 (E07) requires a 400x250 mm² high-rate chamber

??


Downstream Detectors

 Tracker 1x1 m² x 2 TOF Wall 1.05x1 m² AC x 2 1.2 x 1 m² LC Wall 1.4 x 1.2 m² 	

The present setup.

SKS+ Configuration with BDs

Collaboration

Meetings

- 1st International collaboration meeting
 Oct., 2006 at HYP06
- Collaboration meeting among various SKS experiments
 - May 10, 2007 at KEK
- 2nd International collaboration meeting
 - June 2, 2007 at NP@J-PARC in Tokai
- E05 Italy group meeting
 - June 24, 2007 in Varenna

Job Assignments (1)

- 1mm MWPC R&D and fabrication
 - KEK, Dubna
- MWPC readout ASD and encoder
 - KEK with help of electronics system group
- 3mm DC R&D and fabrication
 - Kyoto, KEK
- BH1
 - KEK, already fabricated
- BH2

– KEK

Job Assignments (2)

- BD, BT modification and maintenance
 - Tohoku, Freiburg, MSU
- AC
 - T.B.A. (KEK? Osaka?)
- DAQ
 - KEK, RIKEN(E15) with help of electronics system group
- Water Cherenkov (E05)
 - Italy
- Dipole magnet, DC3 (E05)
 - KEK
- Muon filter, etc (E13)
 - Tohoku

Requests to KEK

- Support for Travel expenses to send people to J-PARC
- Budget allocation for Facility-oriented supports:
 - Trailer houses, Stock room service, Electronics pool, etc.
- Support for Experiment Preparation Area

Beam Request

- We will be ready for the first beam by April, 2009.
- We need test beams for detector checks from Jan. to March, 2009.
- We want to start the first physics data taking not later than September, 2009.