E15: A Search for a deeply bound kaonic nuclear state by the in-flight ³He(K⁻,n) reaction at J-PARC

--- 2nd presentation ---

S. Ajimura^a, G. Beer^b, H. Bhang^c, P. Buehler^d, M. Cargnelli^d, J. Chiba^e, S. Choi^c, C. Curceanu^f, F. Diego^g H. Fujioka^{h*}, T. Fukudaⁱ, Y. Fukuda^j, C. Guaraldo^f,
T. Hanaki^e, R. S. Hayano^h, A. Hirtl^d, M. Iio^k, M. Iliescu^f, T. Ishikawa^h, S. Ishimoto^l, T. Ishiwatari^d, K. Itahashi^k, <u>M. Iwasaki^{k,j†}</u>, P. Kienle^{d,m}, B. Luigiⁿ, J. Marton^d, Y. Matsuda^k, Y. Mizoiⁱ, <u>T. Nagae^{l‡}</u>, H. Ohnishi^{k§}, S. Okada^k, M. Ombretta^o,
H. Outa^k, A. Sakaguchi^a, M. Sato^j, M. Sekimoto^l, D. Sirghi^f, F. Sirghi^f, S. Suzuki^l, T. Suzuki^{k¶}, D. Tomono^k, A. Toyoda^l, H. Tatsuno^h, E. Widmann^d, T. Yamazaki^k, H. Yim^c, J. Zmeskal^d

M. Iwasaki

OBJECTIVE of E549 + E570

1. Confirmation of S^o

2. ⁴He(K⁻_{stop}, n) spectroscopy

higher redundancieshigher statisticsP × 20 n × 6better resolutionP 300 -> 120 psinclusive for proton-> 200 ps

Upper limit of peak formation yield

Recent theoretical progress

	method	B.E.	Г
Akaishi, Yamazaki PLB 535 (2002) 70	ATMS	48 MeV	61 MeV
K. Swe Mynt, Akaishi APFB05	Gaussian base Rearrangement-channel		
Ivanov, Kinle, Marton, Widmann nucl-th/0512037	Field theoretic approach	115 MeV	28 MeV
Dote, Weise YKIS06	AMD		
Ikeda, Sato HYP06	Faddeev	55 MeV	40 MeV
Arai, Yasui, Oka JPS06-2	Λ^* N model	87 MeV	
Shevchenko, Gal, Mares nucl-th/0610022	Faddeev	55-70 MeV	95-110 MeV

Kaon will be bound but wider in width

Why E471 gives Peak in proton spectrum?

Why E471 gave Peak in proton spectrum?

1. Peak in proton spectrum is most likely experimental bias

- 2. E471 data re-analysis is impossible!
- 3. No such effect is expected in neutron spectrum

Decay particle study

$$\begin{array}{ll} \mathsf{K}^{\cdot} \mathsf{p} \mathsf{p} \rightarrow \Sigma^{+} \mathsf{n} & \\ & \rightarrow \mathsf{n} + \pi^{+} & \\ & \rightarrow \mathsf{p} + \pi^{0} & \Sigma^{+} \mathsf{N} & \sim 1\% \\ \mathsf{K}^{-} \mathsf{p} \mathsf{p} \rightarrow \mathsf{n} + \pi^{-} & \\ & \rightarrow \mathsf{n} + \pi^{0} & \\ \mathsf{K}^{-} \mathsf{p} \mathsf{n} \rightarrow \mathsf{A}(\Sigma \mathsf{0}) \mathsf{n} & \\ & \rightarrow \mathsf{p} + \pi^{-} & \\ & \rightarrow \mathsf{n} + \pi^{0} & \\ \mathsf{K}^{-} \mathsf{p} \mathsf{n} \rightarrow \Sigma^{-} \mathsf{p} & \\ & \rightarrow \mathsf{n} + \pi^{-} & \\ \mathsf{K}^{-} \mathsf{n} \mathsf{n} \rightarrow \Sigma^{-} \mathsf{n} & \\ & \rightarrow \mathsf{n} + \pi^{-} & \\ \end{array}$$

How to calibrate the neutron detector?

Absolute momentum scale calibration for Neutron counter

Charge exchange reaction, $p(K^-,n),K_S^0$, will be used. (w/ CH2 target)

Large cross section with 1 GeV/c momentum K⁻ beam.

~ 6 mb

8.0

6.

4.(

2.0

0.0

1.0

1.1

1.2

1.3

CROSS-SECTION (mb

(b)K_p → K °n

Nucl. Phys. B105(1976)189

Known:

- incident K- beam momentum
- K_S^0 momentum measured by CDC

Reconstruct expect neutron momentum:

from K0 in CDC + incident K⁻ beam momentum

