P10-1: Production of Neutron-Rich Λ-Hypernuclei with the Double Charge-Exchange Reaction

(update of P10: Study on Λ -Hypernuclei with the Charge-Exchange Reactions)

Ajimura \rightarrow P10-2: on weak decay of Λ -hypernuclei

Collaboration: Osaka Univ., KEK, Osaka E. Univ., Seoul Natl. Univ., JAEA, Univ. Torino, INFN and INAF-IFSI

> Co-Spokespersons: Atsushi Sakaguchi (Osaka Univ.) Tomokazu Fukuda (Osaka E.-C. Univ.)

Subjects of proposal P10-1

- Production of neutron-rich Λ -hypernuclei
 - $-\Lambda$ -hypernuclei close to neutron drip-line
 - Quite exotic objects if mass number is small
- Λ -nucleus interaction in high isospin state
 - Structures of hypernuclei $\rightarrow \Lambda$ -N interaction in neutron-rich environment
 - $\Lambda N-\Sigma N$ mixing is important if isospin $\neq 0$
 - Close connection to EoS in neutron stars

3

Exotic Λ -hypernuclei

$\Lambda N-\Sigma N$ mixing effect

important in neutron-rich Λ -hypernuclei (large isospin)

at J-PARC PAC Meeting, 11 January 2007

EoS of matter in neutron star

- Strangeness degree of freedom inevitable
 - What kinds of strangeness appear ?
 - Controlled by mass, charge and interaction.

How to produce n-rich Λ -hypernuclei

Experimental setup at J-PARC

• K1.8 beamline + SKS

Excellent resolution Large acceptance

Yield: ⁹, He production

- Particle bound \rightarrow clear observation of g.s.

Parameters	Values
π^- beam momentum	1.20 GeV/c
π^- beam intensity	1×10^7 /spill \leftarrow High beam intensity
PS acceleration cycle	3.4 sec
⁹ Be target thickness	$3.5 \ g/cm^2$
Reaction cross section	10 nb/sr
Spectrometer solid angle	0.1 sr
Spectrometer efficiency	0.5
Analysis efficiency	0.5

- $d\sigma/d\Omega = 10$ nb/sr is assumed (same order as ¹⁰, Li hypernucleus) if beam spill
- 310 events in 3 weeks
- longer (3sec) → ×2 – 7 times larger ← KEK-E521 _
- Discussion on level structure possible

Yield: ${}^{6}_{\Lambda}$ H production

- Simple estimation tells binding is marginal
 - May be bound or may not
 - May observe even unbound g.s. if width is narrow
- Yield estimation has large ambiguity
 - Exotic nature of ${}^{6}_{\Lambda}$ H: overlap of w.f. smaller ?
 - Production cross section may be smaller ?
- Yield vs. information
 - **Pessimistic estimation**
 - ~50 events: discuss "bound" or "not bound"

Optimistic estimation

• ~300 events: some discussion on level structure

- Need only K1.8 beamline and SKS
- Beamline and detectors will be ready in FY08
- Collaboration with E05

Summary of proposal

- Double CX: New spectroscopic tool
 - Hypernuclei close to neutron drip-line: ⁹ He
 - Exotic Λ -hypernuclei: ${}^{6}_{\Lambda}H$
 - Expect higher statistics than KEK-E521
- Information from neutron-rich Λ -Hypernuclei
 - Λ -N interaction in neutron-rich environment
 - $\Lambda N-\Sigma N$ mixing effects
 - Small $\Lambda\text{-}\Sigma$ mass difference
 - Important if core nucleus has non-zero isospin
 - Close connection to the EoS of matter in neutron stars (isospin » 1)

Backup Slides

Flavor SU(3) symmetry

- u and d quarks $SU_F(2)$
- \rightarrow u, d and s quarks SU_F(3)
 - proton and neutron
 - and hyperons
- Lightest hyperon (Λ)
 - Λ-hypernuclei
 - Another stable "nuclei"
- Other hyperons
 - $-\Lambda N-\Sigma N$ mixing occur
 - Affect to Λ -nucleus interaction

$\Lambda N-\Sigma N$ mixing effect

Important in n-rich (or p-rich) Λ -hypernuclei

Structure of ${}^{9}_{\Lambda}$ He hypernucleus

- Expected to be particle stable
 - Core nucleus ⁸He is particle bound
- Practical decay thresholds
 - Naive extrapolation of B_{Λ} tells B_{Λ} ~8MeV
 - \rightarrow 3 MeV more bound than ⁸_AHe+n threshold

Structure of ${}^{6}_{\Lambda}$ H hypernucleus

Ingredients of neutron stars

- Core of neutron stars
 - Need strangeness degree of freedom
 - What kinds of strangeness appear ?
 - Controlled by mass, charge, interaction, etc.

$\Lambda N-\Sigma N$ mixing in neutron star

- Large n/p asymmetry (isospin »1)
 - $\Lambda N \Sigma N$ mixing is quite natural
 - Information on mixing for EoS discussion
 - Study of neutron-rich hypernuclei may provide

EoS and mass of neutron stars

Upper bound of neutron star mass <1.5M_S

$\Lambda N-\Sigma N$ mixing effect on EoS

• Degree of $\Lambda N-\Sigma^0 N$ mixing and EoS

Results of KEK-PS-E521 experiment

• Cross section

- p_{π} =1.2 GeV/c $d\sigma/d\Omega \approx 11 \text{ nb/sr}$ - p_{π} =1.05 GeV/c $d\sigma/d\Omega \approx 6 \text{ nb/sr}$

Reaction mechanism

at J-PARC PAC Meeting, 11 January 2007

SKS energy resolution

Summary of experimental resolution

Calibration

- ${\sf B}_{\Lambda}$ and Ex calibration
 - ${}^{12}_{\Lambda}$ C production by the (π^+ ,K⁺) reaction
 - Ground state (s_{1/2,Λ}): B_Λ=10.76±0.19 MeV
 - Excited state (p_{3/2, Λ}): Ex=11.00 \pm 0.03 MeV
 - Obtain response function (peak shape)
 - No change in SKS, beamline polarity change
 - Symmetry of π^+/π^- beams
 - Narrow acceptance of beamline
- 1 shift for every 1 week
 - $-\Delta B_{\Lambda}$, $\Delta Ex \sim 0.05$ MeV (stat.)

Length of Flat Top vs Yield

Time schedule of "weak decay" experiment

High Intensity and High Resolution beamline

at J-PARC PAC Meeting, 11 January 2007

High Intensity and High Resolution beamline (new configuration)

T1 TGT