P14: KL->T⁰VV Experiment at J-Parc

Taku Yamanaka Osaka Univ.

...for the collaboration

J-Parc in the LHC era

- * Energy frontier: LHC, LC, ...
 - * direct search for new physics, such as SUSY
- * INTENSITY FRONTIER: J-Parc
 - * understand the FLAVOR PHYSICS of the new particles
 - * search beyond the energy frontier
- * Why the matter dominant universe?

The probe: KL->TOVV

 \propto CP violation

Kl->T⁰vv in Standard Model

 η

 * BR = (2.8±0.4) x 10⁻¹¹ (w/currently known CKM parameters)
 * 1 - 2% theoretical error

New Physics adds extra amplitude

s

 η_{\wedge}

 \widetilde{u}

 $K_L \rightarrow$

* Compare with B results

 $\rightarrow J/\psi K_S$

d

 $\overline{\nu}$

 $\pi^0
u \overline{
u}$

6

Our ultimate goal at J-Parc

7

Measure the BR(K_L->π⁰vv) to several % by collecting >100 signal events

to ...

probe New Physics

based on Bryman-Buras-Isidori-Littenberg, hep-ph/0505171

- * Need high KL yield
- * K_L->π⁰π⁰ background with 2 missing photons
- * Neutron interactions and rates

Basic Strategy Hermetic veto w/high detection effciency

* $K_{L} \rightarrow 2\pi^{0}$ bkg \propto ineff(E₁)x ineff(E₂)

Basic Strategy Small Ki Beam

13

* to suppress background photons escaping down the beam hole in the calorimeter

* Modified E391a detector at KO beamline

Step 1 Detector

* Hermetic veto system w/high detection efficiency

Calorimeter

Beam Hole Photon Veto

Beam Hole Photon Veto

Barrel Photon Veto

Frontend, Trigger, DAQ

- * Record waveform near phototubes
 - * to distinguish overlapping pulses
 - * for lower noise
- * Level 2 cluster counter
- * Level 3 online filtering

Signal Sensitivity

Backgrounds for 7 SM signal events

#Background events Background source Other K_L decays $K_L \to \pi^0 \pi^0$ 3.65 $K_L \to \pi^+ \pi^- \pi^0$ 0.93 $K_L \to \pi^- e^+ \nu$ 0.01 $K_L \to \gamma \gamma$ $K_L \to \pi^0 \pi^0 \pi^0$ Neutron Interaction With Residual gas 0.07At the CC02 0.26At the C.V. Accidental Coincidence 0.20

negligible negligible negligible

$K_L \rightarrow \pi^0 \pi^0$ background

KL->100 background

26

$K_L \rightarrow \pi^0 \pi^0$ background

* background/signal = 0.52

- * 0.47 : even pairing
- * 0.017 : odd pairing
- * 0.036 : fusion

$K_L \rightarrow \pi^+\pi^-\pi^0$ background

Schedule

- * 2006
 * Design collimators
 - * Prepare transferring KTeV Csl
- Start designing new readout
 2007
- Move KTeV Csl, upgrade detector
 2008
 - * Build KO beamline => First beam survey
 * Assemble detector
- * 2009
- More beam survey and detector tuning
 2010: PHYSICS DATA

Cost: \$3.7M

- * Beamline: \$0.6M
- * Calorimeter: \$1.1M
- * Main Barrel veto upgrade: ©0.3M
- * Vacuum system: \$0.25M
- * Beam hole photon veto: \$0.3M
- * Collar Counters: \$0.2M
- * Trigger and DAQ: \$0.55M
- * Transportation from KEK: \$0.5M
- * Detector assembly \$0.2M

- * Step 1 is the major and mandatory step to measure $BR(K_L > \pi^0 v v)$
- * We need to:
 - * build KO beamline by 2008
 - * replace calorimeter w/ KTeV Csl
 - * build new DAQ
 - * upgrade other detectors

* J-Parc is the only facility that can run this experiment

* We are THE group who have the most experience

- * Run 1 (2004), Run2, 3 (2005)
- * Took time for:
 - * calibration, bkg understanding, large MC
- * Submit paper on Run 1 1-week data in July
- * end of 2006: Open signal box for Run 2
- * end of 2007: finish all the analysis

Direct comparison Run-I and Run-II

Run 2 vs Run 1 z dist.

Veto inefficiencies

37

Gamma fusion probability

Background measurement

* point missing photon to Main Barrel veto

Effect of T1 disc target

16 degree extraction angle

View from KO beamline

41

* neutrons

View from KO beamline

42

* kaons

Step 1 beamline

43

* halo neutrons/core < 10⁻⁵

Beam intensity

* 2E14 30GeV protons/spill

- * 16deg extraction angle
- * 9µstr beam
- * 8.1E6 KL/spill @ beam exit
- * 3E5 KL decays/spill in 2m

* 2E14 protons on target

* 11.6MHz KL, 490MHz n

* Overall rate in detector = 26MHz

* = 22MHz accidental rate

* + 4MHz KL decay in 21m

Detector	Counting Rates (kHz)
Main Barrel	7.5
Front Barrel	10
Charged Veto (CV)	3.5
Inner CV	11
Barrel CV	15
Beam hole CV	45
CC02	8
CC03	11
CC04	24
CC05	28
CC06	50
CC07	125
Beam Hole Photon Veto	600

Accidental hits in detector except for BA, CC06, CC07

47

Acceptance

Acceptance loss

- * accidental activities: 27%
- * cluster shape cut: 30%
- * isolated low energy cluster (by low E neutrons): 10%

Single Event Sensitivity

- * 2E14 protons/3.3s x 3E7sec gives
 - 2.6E12 KL decays in 2m
- * SES =1/(N_K x decay prob. x acceptance)
 - = 4.0E-12 (w/o acceptance loss)
 - = 8.0E-12 (w/ 50% acceptance loss)
- * 3.5 standard model events (w/acc. loss)

* Optimized beamline with 5deg angle for

* higher KL momentum <PK>=5.2GeV/c

* higher yield: 4.4E7/2µsr /3E14pot

Egamma is higher at Step 2

* Thus better veto inefficiency

THE UNIVERSITY OF CHICAGO THE ENRICO FERMI INSTITUTE 5640 South Ellis Avenue Chicago, Illinois 60637-1433 March 18th 2006

KTeV Csl loan request

Dr. Pier Oddone, Director Fermi National Accelerator Laboratory Batavia, Illinois 60510

Dear Dr. Oddone,

We would like to ask for your consideration and support to use the Fermilab E832/E799 CsI crystal array for a JPARC rare kaon decay experiment.

The experiment E391a at KEK aims to measure the rare neutral kaon decay mode $K_{L} \rightarrow \pi^0 vv$ with a single event sensitivity of ~10⁻⁹. The last data taking period ended in December 2005 and we are in the midst of analyzing three runs of data collected in the past two years. An important goal of E391a is to validate the principles of the measurement techniques and to show that there is no fundamental show stopper for future JPARC followup. The JPARC complex starts to opera

The JPARC complex starts to operate in 2007, and likely to be ready for physics experiments in 2008 if not earlier. If the loan is favorable, we will work towards the logistics and a timeline. We appreciate your consideration and thank much in advance.

Sincerely yours,

Yan Wai Wah

Yau W. WAH Professor, Physics Department The College & The Enrico Fermi Institute

Tille Mare

Taku Yamanaka Professor, Physics Department Osaka University

Schedule

	• Start preparing the beam collimators.					
2006	• Prepare for transferring and shipping CsI crystals.					
	• Start designing the new CsI readout electronics.					
2007	Start designing the new DAQ.Build beam collimators.					
	• Start assembling the additional MB layers.					
	• Ship KTeV CsI crystals.					
	• Move some of the E391a detector parts to J-Parc.					
	 Start assembling the new DAQ. Finish installing the beam line by the summer shutdown. 					
2008	• Move most of the E391 detector components from KEK to J-Parc.					
	• Construct the CsI Calorimeter.					
	• Build the DAQ system.					
2009 2010	 December: Start a beam survey during night. Construct and install rest of the detector components. 					
	Continue beam survey, and tune the detector.The first physics data taking run.					

年度	品名・仕様	数	量	単価	金	額	主として使用する研 究者及び設置機関名	購入予定 時 期
H18	VME クレート, 9U		1	500		500	山鹿、阪大	11月
	DAQ テスト回路		1	1,000		1,000	山鹿、阪大	11月
	DAQ テスト用 PC 一式		1	500		500	山鹿、阪大	11月
H19	ビームライン設置用架台		1	7,000		7,000	稻垣、KEK	10月
	波形記録用回路		20	450		9,000	山鹿、阪大	8月
	PC farm 周辺機器		1	500		500	小松原、KEK	7月
H20	ビームライン用ポンプ		2	1,000		2,000	稻垣、KEK	7月
	移設に伴う設置器具		1	8,000		8,000	稻垣、KEK	6月
	大型円筒型検出器架台		1	12,000		$12,\!000$	Lim、KEK	9月
	CsI 較正用レーザー		1	3,000		3,000	Lim, KEK	7月
	真空ポンプ		1	1,000		1,000	稻垣、KEK	7月
	DAQ 一式 (FADC 等)		1	23,000		23,000	山鹿、KEK	10月
	PC farm 周辺機器		1	500		500	小松原、KEK	9月
H21	移設に伴う設置機器		1	2,000		2,000	Lim, KEK	6月
	高/低真空分離薄膜		1	5,000		5,000	Lim, KEK	7月
	コリメータ検出器架台		1	4,000		4,000	Lim, KEK	7月
	DAQ 一式 (VME)		1	9,000		9,000	山鹿、KEK	8月
	DAQ用分散計算機一式		1	3,000		3,000	山鹿、KEK	8月
	PC farm 一式		1	2,000		2,000	小松原、KEK	8月
	結晶開発用分光計		1	1,000		1,000	鈴木、佐賀大	8月
H22	真空用備品一式		1	5,000		5,000	Lim, KEK	7月
	PC farm 一式		1	6,500		6,500	山鹿、KEK	8月
	ガンマ線方向検出器読み 出し装置一式		1	3,000		3,000	小松原、KEK	9月
	結晶開発用 ADC 回路		2	500		1,000	鈴木、佐賀大	9月
H23	ガンマ線方向検出器読み		1	1,000		1,000	小松原、KEK	7月
	出し装置一式 結晶開発用測定装置		1	1,000		1,000	鈴木、佐賀大	7月

