July 1, 2006 PAC meeting

J-PARC 50-GeV PS Proposal

Measurement of T-violating Transverse Muon Polarization in $K^+ \rightarrow \pi^0 \mu^+ \nu$ Decays

J. Imazato IPNS, KEK

Transverse muon polarization

- P_T is T-odd and spurious effects from final state interaction are small. Non-zero P_T is a signature of T violation.
- Very clear channel to search for T violation. Long history of theoretical and experimental studies. (J.J. Sakurai, 1957)
- Powerful tool to study CP violation due to CTP theorem.
- One of the typical experiments of high-precision frontier. *cf.* neutron EDM, g_{μ} -2

Theoretical aspects

- Standard Model contribution to P_T :
 - Only from vertex radiative corrections and $P_T(SM) < 10^{-7}$
- Spurious effects from final state interactions (FSI)
 - Recent elaborate calculation : $P_T(FSI) < 10^{-5}$

- There is a large window for new physics in the region of $P_T = 10^{-3} \sim 10^{-5}$
- There are theoretical models which allow sizeable P_T without conflicting with other experimental constraints.

Features of P_T in looking for new physics

- Interference phenomena with the SM *W*-exchange
 - $P_T \sim 1/\Lambda^2$ (Λ is the mass scale of new interactions in the effective Lagrangian)
- Sensitive to CP violation in the Higgs sector
 - After the Higgs boson will be discovered, it becomes more important to look for associated CP violating couplings
- Stringent constraint to exotic scalar interactions
 - $P_T \sim 0.38 \text{ Im} C_S (\text{TeV}/\Lambda)^2$ (C_S is the scalar coefficient)
- P_T can be studied also in other channels
 - $K^+ \rightarrow \mu^+ \nu \gamma, \quad K^+ \rightarrow \pi^+ \mu^+ \mu^-,$
 - Possibility to distinguish models

Model descriptions of P_T

$$P_T = \operatorname{Im} \xi \cdot \frac{m_{\mu}}{m_K} \frac{|\vec{p}_{\mu}|}{[E_{\mu} + |\vec{p}_{\mu}|\vec{n}_{\mu} \cdot \vec{n}_{\nu} - m_{\mu}^2/m_K]} \quad \operatorname{Im} \xi = \frac{(m_K^2 - m_{\pi}^2) \operatorname{Im} G_S^*}{\sqrt{2}(m_s - m_u)m_{\mu}G_F \sin \theta_C}$$

$$P_T \text{ is sensitive to scalar interactions}$$

- Multi-Higgs doublet (3 Higgs doublet) model
 - $\text{Im}\xi = (m_K^2/m_H^2) \text{Im}(\gamma_1 \alpha_1^*)$
 - $|\operatorname{Im}(\gamma_1 \alpha_1^*)| < 544 \ (m_H/\text{GeV})^2$ from the E246 limit
 - $B \rightarrow \tau v X$ constraints also Im($\gamma_1 \alpha_1^*$) but weaker (<1900 (m_H/GeV)²)
 - N-EDM and $b \rightarrow s\gamma$ constraint differently Im $(\alpha_1 \beta_1^*)$
- SUSY with squark mixing
 - $\text{Im}\xi \propto \text{Im}[V_{33}^{H+} V_{32}^{DL*} V_{31}^{UR*}]/m_H^2$
 - − $m_H \ge 140$ GeV from the E246 limit and no stringent limit from other modes
- SUSY with R-parity violation
 - $\operatorname{Im} \xi^{l} \sim \operatorname{Im} [\lambda_{2i2}(\lambda_{i12})^{*}], \qquad \operatorname{Im} \xi^{d} \sim \operatorname{Im} [\lambda_{21k}^{*}(\lambda_{22k}^{*})^{*}]$
 - No stringent limits from other modes

KEK-PS E246 experiment

≠°BWD

TOF e⁺Counter Target Fiber

Ring Counter

〇回昔 Muon Degrader

Muon Stopper

≠⁰FWD

C4 Polarimeter Trigger Counte

E246 result

 $P_T = -0.0017 \pm 0.0023(stat) \pm 0.0011(syst)$ $(|P_T| < 0.0050 : 90\% C.L.)$

 $Im\xi = -0.0053 \pm 0.0071(stat) \pm 0.0036(syst)$ $(|Im\xi| < 0.016 : 90\% C.L.)$

Statistical error dominant

J-PARC experiment

• We aim at a sensitivity of $\delta P_T \sim 10^{-4}$

 $\delta P_T^{\text{stat}} \leq 0.1 \, \delta P_T^{\text{stat}} (E246) \sim 10^{-4} \text{ with}$

- 1) \times 30 of beam intensity,
- 2) \times 10 of detector acceptance, and
- 3) higher analyzing power

 $\delta P_T^{\text{syst}} \sim 0.1 \ \delta P_T^{\text{syst}} (\text{E246}) \sim 10^{-4} \text{ by}$

1) precise calibration of misalignments using data

2) correction of systematic effects

Source	δP_T in E246	J-PARC
$\mu^{{}_{t}}$ multiple scattering	7.1 ×10 ⁻⁴	not existing
Decay plane angle (θ_r)	1.2 ×10 ⁻⁴	corrected
Decay plane angle (θ_z)	0.7×10^{-4}	correcetd
B offset (ε)	3.0×10^{-4}	not existing
B field rotation (δ_r)	0.4×10^{-4}	measured by data and corrected
B field rotation (δ_z)	5.3 ×10 ⁻⁴	measured by data and corrected
e^+ counter shits and rotations	2.9×10^{-4}	not existing
Shifts of other elements	3.2 ×10 ⁻⁴	measured by data and corrected

Method of experiment

- Stopped *K*⁺ decay
 - Superior to in-flight decay
- Toroidal spectrometer

- E246 detector upgrade
 - -Well known performance
 - -Well studied systematics
 - -Good alignment in magnet and CsI(Tl)

-Lower cost

Upgrade of the detector

- Muon polarimeter
- Target
- CsI(Tl) readout

- : passive \rightarrow active
- Muon magnetic field : toroid \rightarrow muon field magnet
 - : smaller and finer segmentation
 - Charged particle tracking : addition of two chambers
 - : PIN diode \rightarrow APD
- Electronics and data taking : TKO \rightarrow KEK-VME & COPPER
- New analysis scheme

E246 muon polarimeter

Active polarimeter

- Identification of muon stopping point/ decay vertex
- Measurement of positron energy E_{e^+} and angle θ_{e^+}
- Large positron acceptance of nearly 4π
- Larger analyzing power
- Higher sensitivity
- Lower BG in positron spectra

Parallel plate stopper with Gap drift chambers

Number of plates	33
Plate material	Al, Mg or alloy
Plate thickness	~ 2 mm
Plate gap	~ 8 mm
Ave. density	$0.24 \rho_{Al}$
μ^+ stop efficiency	~ 85%

- Small systematics for L/R positron
- asymmetry measurement
- Fit for π^0 *fwd/bwd* measurement
- Simple structure

Muon stopping distribution in the stopper

Muon field magnet

- Gap : 30 cm
- Pole face : $60 \text{ cm} \times 40 \text{ cm}$
- No. of coils : 24
- Mag. motive force : 3.6×10^3 A Turn/coil
- Total power : 6 kW
- Total weigt : $\sim 5 \text{ t}$

Target and tracking

Better kinematical resolution
Stronger K_{π2} dif μ⁺ BG

suppression

- Addition of C0 and C1 GEM chambers with
 - high position resolution
 - higher rate performance

- Four chamber tracking including C0 with 0.1mm resolution ==> Suppression of $K_{\pi 2}$ -*dif* down to ~1.0%
- Remaining BG is from the π^+ decay between the target and CO.
- Further suppression down to 0.1% level with the fit trajectory consistency with target fibers, and target fiber analysis.
- Up/down cancellation of $P_T(\pi_{\mu 2})$ in each gap with a cancellation power of at least 10.

 $\delta P_T(\pi_{\mu 2} \text{ BG}) < 10^{-4}$

Alignment calibration

Calibration of four misalignments

Polarimeter *left/right* asymmetry measurement using

- longitudinal pol. P_L from $K_{\mu3}$ or $K_{\mu2}$
- radial polarization P_r from $K_{\pi 2}$ - π^+ decay in flight or *r* component of P_L

Unique determination of $\varepsilon_{r} \quad \varepsilon_{z} \quad \delta_{r} \quad \delta_{z}$

Now a MC study is going on.

Beamline

K0.8 (K1.1-BR)

Momentum	800 MeV/c
Momentum bite	±2.5%
Acceptance	6.5 msr % ∆p/p
<i>K</i> ⁺ intensity	$3 \times 10^{6} / s$
K/π ratio	> 2
Beam spot	1.04 ×0.78 cm
	(FWQM)
Final focus	achromatic

Good *K*/*π* ratio due to two vertical focuses, FY and MS1, and a horizontal focus HFOC
Better performance than K5
Alternate use with K1.1 by replacing B3

Sensitivity estimate

Cost estimate and funding

(very rough estimate in k¥)

SC magnet and cryogenic system	182,000	
Muon field magnet system	42,000	
Detector upgrade	131,000	
Electronics and DAQ	60,000	
Measurements and others	40,000	
Total	455,000	

- Funding for detector upgrade : We intend to apply for a Grant-in-Aid after obtaining stage-1 approval.
- The J-PARC experimental money will be also helpful.
- R&D of detector components : Small budget request in each country.
- Transfer of the cryogenic system : We ask KEK to finish it.

Time schedule

- Time schedule is dependent on funding, but
- We aim at the following.

Year (JFY)	Construction	Experiment	Other conditions
2006	1) Detector design		PAC decision
	2) Start of budget app	lication	
	3) Formation of collabo	oration	
2005		2	
2007	1) Detector element Ra	&D	Completion of the hall
	2) Muon field magnet a 2) Construction of CO	and mapping	
	4) Modification of Col	The readout	
	4) Modification of Csi	II) leadout	
2008	1) Transfer of the Torc	id and He refrigerator	Start of J-PARC exp. budget
	2) Installation of K1.1	and K0.8 branch	
	3) Production of C0 and	nd C1	
	4) Production of Targe	t and Polarimeter	
2009	1) Setup of the spectro	meter	
	2) Field mapping		
	3) Detector setup		
		4) Beam tuning	
2010		1) Engineering run	
2010		2) Data taking	Full intensity from Acc?
		2) Data taning	i an intensity from Acc.:
2011		1) Data taking	
		-,	
2012		1) Analysis	

Collaboration (present group)

• Canada	U.Saskatchewan TRIUMF UBC U. Montreal	BeamlineTarget
• USA	MIT U. South Carolina Iowa State U.	GEM chambersTracking upgrade
• Japan	KEK Tohoku U. Osaka U. NDA	 Muon field magnet Active polarimeter CsI(Tl) readout DAQ

We will organize more people after obtaining an approval.

Summary

- P_T in $K_{\mu 3}$ is a very sensitive probe of new physics
- We propose a J-PARC experiment in the early stage of Phase 1 to pursue a limit of $\delta P_T \sim 10^{-4}$.
- K0.8 beamline as a branch of K1.1
- Upgraded E246 detector

• Beam time request = 1.3×10^7 s (net) at $I_p = 9\mu$ A on T1

- We would like to take the first step this year toward
 - Collaboration forming
 - Fund application
 - Detector R&D

after obtaining some status.