Design Study of PRISM

Akira SATO Osaka University

2001/12/11

NP01

Contents

- PRISM Overview
- Design and R&D Status
 - Fast Extraction
 - Target, pion capture, beam transport
 - FFAG -phase rotator
- Summary

2001/12/11

PRISM Overview

- Phase Rotation Intense Slow Muon source
 a dedicated secondary muon beam channel with
 - High Intensity
 - Narrow Energy Spread
 - High Purity

High Field Pion Capture Phase Rotation

for stopped muon experiments.

PRISM Beam Characteristics

intensity: 10¹¹-10¹²µ[±]/sec
muon kinetic energy: 20 MeV (=68 MeV/c)
range = about 3 g
kinetic energy spread : ±0.5-1.0 MeV
± a few 100 mg range width
beam repetition : about 100Hz

2001/12/11

Phase Rotation

Phase Rotation = decelerate particles with high energy and accelerate particle with low energy by high-field RF

A narrow pulse structure (<1 nsec) of proton beam is needed to ensure that highenergy particles come early and low-energy one come late.

2001/12/11

How to realize PRISM

- Proton driver
 - High intensity
 - Bunched Beam
- Pion capture
 - High field solenoid
 - High Radiation
 - High heat load
- Phase rotator
 - FFAG

2001/12/11

Fast extraction scheme

Fast Extraction
 100Hz is feasible
 Cf. 1MHz(MECO)

Event Rate Huge!

2001/12/11

Experimental Hall - PRISM-

Pion Capture Yield

 maximum transverse momentum

$$P_T(MeV/c) = 0.3 \times H(kG) \times \left(\frac{R}{2}\right)(cm)$$

PRISM Phase-Rotation Information Store Manuer High-Intensity Low-Energy µ Source

2001/12/11

Solenoid R&D

High field superconducting solenoid magnet

a test magnet

11T hybrid magnet (Nb₃Sn, NbTi)

18 20

22 24

26 28

32 34

Thickness of tungsten shield(g/cm3)

2001/12/11

FFAG for Phase Rotation

Fixed Field Alternating Gradient Synchrotron

- synchrotron oscillation for phase rotation
 - not cyclotron (isochronous)
- Iarge momentum acceptance
 - larger than synchrotron
 - ± several 10 % is aimed
- Iarge transverse acceptance
 - strong focusing
 - Iarge horizontal emittance
 - reasonable vertical emittance at low energy

2001/12/11

Injector to FFAG Ring

- FFAG has large momentum acc.
 Outer region :
 High mom. particle
 Inner region :
 Low mom. particle
- Dispersion matching is required

Double bend magnets injector

2001/12/11

FFAG R&D (1)

Proton FFAG POP Machine

- the first proton
 FFAG in the
 world
- 500 keV acceleration

PRISM Phase-Rotation Internet Store M High-Intensity Low-Energy µ Source

2001/12/11

FFAG R&D (2)

High-Intensity Low-Energy µ Source

150MeV FFAG at E-Hall

Phase Rotation Simulation

2001/12/11

Phase Rotation Simulation

Phase rotation realize the narrow energy spread muon beam

after phase rotation -

before phase rotation -

2001/12/11

PRISM Phase Rotator

- 3D tracking simulation is studied to get realistic layout
- Applied budget to a funding agency with 6RFs
- *c* 2002-2006
 - Construction Full Scale Prototype and Study
 - Acceptance
 - Phase rotation

PRISM Phase Rotator

Layout of the prototype phase rotator

2001/12/11

Muon Yield Estimation

muon yield
0.005 - 0.01µ[±]/proton
in 20 MeV±(0.5-1.0)MeV range

10¹⁴ proton/sec at the 50-GeV PS

- P_T<90 MeV/c</p>
- (12T 5cm radius) at pion capture
- 10000π mm mrad
- Horizontal acceptance
- 3000π mm mrad

vertical acceptance of FFAG

 $10^{11}-10^{12} \mu^{\pm}/sec$

NP01@KEK

2001/12/11

Application List with PRISM

- Particle, Nuclear
 Physics
 - Lepton flavor violation
 - µe conversion,
 - μ+ μ- conversion
 - μ life time
 - g-2

- Material Science
 - Muonic X-ray, μ sR
- Archeology
- Life science
 - Living cell
 - Brain scan

2001/12/11

Summary

- PRISM is a high-intensity low energy muon source with narrow energy spread and less contamination.
- Many simulation and R&D are studying to get realistic design...

toward to construct PRISM in 2007!

