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Roadmapsin Scientific Reseach

The recent US HEPAP sub-panel charged with
charting a 20-year future of high energy physics in
the US drew heavily upon the concept of
a Roadmap

A ‘“roadmap” is an

extended look at the % V .
lde.

future of a chosen field

of inquiry composed
from the collective
knowledge and imagine
of the brightest drivers
of change in that field
Robert Galvin

Former CEO, Motorola

OOOOO

Why a “roadmap”?

map : because we have a broad sense of the goals
of our exploration

road : because we can conceive of promising routes
to reach our goals
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Goalsof the US Particle Physics
Roadmap

Ultimate
" Unification

- E : E%
.
— Particle
. = Astrophysics
Very Rare Higgs g Extra Space Anti—Matter
Processes Dimensions
. Supersymmetry
Neutrinos Dark Matter
and Energy

e Studies of neutrino oscillations play a key role in
at least two of these concepts

attempting to find a unified descrip-
tion of fundmental forces and particles

using our description of fundamen-
tal particles and fields to draw inferences about the
present, past and future of the Universe
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Neutrinos and Unification

e Particle periodic table

— Common structure of weak
interactions in quark and
lepton sector

— No contact between quark
and lepton sector

—» No explanation for genera-
tions

e An underlying cause for
these patterns?

e Neutrino oscillation probes leptonic mixing
e Neutrino mass hierarchy can be tested

e Tests for Predictive Grand Unified Theories (ex-
tended gauge groups)
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Neutrinos and the Cosmos

e Dark Matter

— High-z Supernovae, cosmic

microwave background mea- No Bl Bang ol
surements suggest a uni- | o
verse with Qy; ~ 0.2 7

— However, “bright” baryonic

. . 1 -‘., g / F i
matter is only a small fraction & =" SRS vy
— Neutrinos may account for a o S T
fraction of the dark matter %,
=1 F ?:%r..?*v
b TN
Qu ~ Sy /(40 V) L]
1 Ly

e Matter-Antimatter Asymmetry
— The Universe appears to be overwhelmingly constructed
of matter with little anti-matter

— CP violation in the early Universe can lead to such as-
symetries

But known CP violation (quark system) is insufficient
— Leptogenesis from lepton sector CP violation?
v are the probe of this CP violation!
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Neutrino Mixing

SN s / \
\{1\/ t = Un NS \ /
—

Neutrino Flavor Neutrino Mass

Uning = Maki-Nakagawa-Sakata Mixing Matrix
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Two Generation Neutrino Oscillation
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ThreeGeneration Mixing
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“Standard” Scenario

o sin? 2093C'5 & |6 Mys3| (atmospheric)
® sin? 26019 & |0 M;9| (solar)
e (15 small (CHOOZ)
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CP Violation in Neutrino Oscillation

CP Violation requires:

e Appearance measurements
CPT conservation = P(v»v) = P(vov)

e At least two non-zero § M2
(two interfering amplitudes required)

e Non-zero U, g phase, o

Observable is
Pvy — vp) —
P(VA — VB> -+
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CP Violation Scenarios

“Standard” Scenario for v. — v,
e One amplitude with sin 26,3, § M
e Other amplitude with

e Be a and assume SO-
lution (Super-K)

< If sin 2615 > O M}, /6 M3,
P(v, — v,) bigand A » small

— If sin 2013 ~ 6 M% /S ME,
P(v, — v,) small and A » may be big!

— If sin 2013 <« SM$, /6 M3,. . .

Revenge of LSND, e.g. v, — v,
e Two mass scales are now d Misnp, 0 Mtmos!

e CP violation at much shorter baselines!
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Matter Effects & v Oscillation
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Matter Effectsand CP at Long
Baselines
Wrong-Sign Muon Measurements
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(Barger, Geer, Raja, Whisnant)
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So,What Will We Know?

32

o K2K, MINOS, CERN-NGS will precisely probe

atmospheric oscillations
— 9 M3, known to 30%, sin’ 20,3 to 20%

< Small, but not zero chance, we will have discovered

Vu — Ve (|Ue3|)

— If confirmed, suggests 4 light neutrinos

Mass (eV)
l/HDM —l
AV
V2 E /?\ %]
1 — EE ¥ q

A
dM2010°
(Vo) L 3M2010°3
(VAtmos)
» Yo - vy 5M2 01
3x10%F L—— B (LSND)

Will know oscillation parameters 61/,
sin? 2615 to 10% or better
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The Lingering Questions

e Is that all there is?

— Unitarity of 3-generation mixing matrix
— Sterile neutrinos: how many and mixings?

e Measurement of small mixing (|U.s3|)
e Confirmation of Matter Effects in accelerator beam?

e Mass hierarchy: how many light,
how many heavy?

The “likely” key question for experiments:
What is the value of |U.;]
(or, can | see v, — v, at dm?* ~ 1073 eV??)

e |U.3| sets difficulty for measurements of mass hierarchy,
CP violation

e This assumes: solar large mixing angle, large §2, (‘LMA”),
LSND has not observed oscillation
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Toolsof the Future

1. Optimizing “conventional” (meson decay)
neutrino beams

e High power proton sources (megawatt)
e Improved beam designs at low E,
e Reducing detector backgrounds

2. Muon decays as a source of neutrinos

e Source of v, AND v,
e Beam backgrounds negligible
e Requires significant R&D

3. Megaton detectors

e WIll serve as next generation proton decay
detectors as well
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Progressionof |U,3| Sensitvity
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e Conventional “superbeams” based on high rate
proton sources can make huge strides forward

— “Ultimate” is 2 MW protons, 30kTon-yr in Liquid Ar
— Much depends on controlling backgrounds

e But even first muon based neutrino sources do
much better

—» someday...
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Controlling BackgroundsWith the
Beam!

e Most problematic backgrounds to v, are higher
energy v, and v, in beam

—~0.05

% : 30mrad
9Q0.04

@?Q O\Si

§ E 10mrad
00,02

-

O B

+0.01

a

—-0.01¢
-0.02—
—0.03+ — 3GeV 7
B — 4GeV 7
—0.04- — 5GeV 7
B — 6GeV 7
=O'©5\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\
0O 0.25050.75 1 1.251.51.75 2 2.25

p,(longitudinal) (GeV)

e “Off-axis” from = direction makes beam approxi-
mately monochromatic
(first proposed for BNL-889 beam)
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Why Muon Sources?

Conventional (7*) Beam Economics

e Production rates fall steeply with increasing E,
(production cross-section, proton acceleration)
® N,/ o 1NV7T
(neutrino cross-section, divergence)

e

1 Beam Economics

o and capture at low energies
(large cross-section, higher p power)

e Accelerate parent beam after
N, ~ Ef;

If only “produce”, “capture”, “accelerate” and “cool”
were simple!
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SnovmassNeutrino Oscillation
Summary

Where do neutrino physicists in the U.S. see the
focus of the field in the future?

“The recent evidence for neutrino oscillations is a profound dis-
covery. The US should strengthen its lepton flavor research pro-
gram by expediting construction of a high-intensity conventional
neutrino beam ("superbeam”) fed by a 1 - 4 MW proton source.

A superbeam will probe the neutrino mixing angles and mass hi-
erarchy, and may discover leptonic CP violation. The full program
will require neutrino beams at a number of energies, and massive
detectors at a number of baselines. These facilities will also sup-
port a rich program of other important physics, including proton
decay, particle astrophysics, and charged lepton CP- and flavor-
violating processes.

The ultimate laboratory for neutrino oscillation measurements is
a neutrino factory, for which the superbeam facility serves as a
strong foundation. The development of the additional needed
technology for neutrino factories and muon colliders requires a
ongoing vigorous R&D effort in which the US should be a leading
partner.”
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39

Might the US Upgrade NUMI?
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e At 900 km, the matter effects are large compared
to the CP-violating effects

— Determine mass hierarchy with coarse measurement
v, from v, and 7, beams?

e Requires, of course, a high power proton source
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“Imitation Isthe Most Sincere Form of
Flattery”

The rest of the v world thinks so much of the
potential of the JHF 50 GeV PS. ..

e Design studies at FNAL and CERN for high intensity pro-
ton sources that have serious costing and site layout

e Interest is great because v physics motivation is great
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Summary and Roadmap

e Neutrino physics is a rapidly expanding, exciting
field

e In the short-term future we expect to learn much

—» Resolution of , LSND v oscillations
— Precision for atmospheric transition

e We know our next goal

— A complete picture of mixing

— Three (or more) generations participating
* |Ue3|
~ Sterile v?

e And ultimately. ..
— Mass hierarchy, CP violation

e High power proton sources and
are key tools

Neutrino Roadmap \
High Rate / —»| Develop Muon
Low Energyv \ Based Beams

Vi Ve / study CP violation



