Result of T-violating Muon Polarization Measurement in the $K^+ \rightarrow \pi^0 \mu^+ \nu$ Decay

J. Imazato

IPNS, KEK for the KEK-E246 collaboration

March 21, 2004 XXXIXth Rencontres de Moriond

- Transverse muon polarization
- E246 experiment
- Analysis
- Result of the total data

E246 collaboration

Japan
KEK • Univ. of Tsukuba,
Tokyo Institute of Technology
Univ. of Tokyo • Osaka Univ.
Russia
Institute for Nuclear Research
Canada
TRIUMF • Univ. of British Columbia
Univ. of Saskatchewan • Univ. of Montreal
Korea
Yonsei Univ. • Korea Univ.
U.S.A.
Virginia Polytech Institute • Princeton Univ.
Taiwan
National Taiwan Univ.

Transverse Muon Polarization in $K^+ \rightarrow \pi^0 \mu^+ \nu$

$K_{\mu3}$ decay form factors and T violation

$$\begin{split} \mathbf{M} & \propto f_{+}(q^{2}) \left[2 \; \widetilde{p}_{K}^{\lambda} \; \widehat{u}_{\mu} \gamma_{\lambda} (1 - \gamma_{5}) u_{\nu} + (\xi(q^{2}) - 1) \mathbf{m}_{\mu} \widetilde{u}_{\mu} (1 - \gamma_{5}) u_{\nu} \right] \\ & \xi(q^{2}) = \int_{-}^{-} (q^{2}) \, / \, f_{+}(q^{2}) \end{split}$$

$$P_T \sim \operatorname{Im}(\xi) \frac{m_{\mu}}{m_K} \frac{|p_{\mu}|}{E_{\mu} + |p_{\mu}| n_{\mu} \cdot n_{\nu} - m_{\mu}^2 / m_K}$$

Im(ξ) $\neq 0 \longleftrightarrow$ T-violation

History of K_{u3} transverse polarization experiments

• $K_L \rightarrow \pi^- \mu^+ \nu$	Bevatron	1967	$\text{Im}\xi = -0.02 \pm 0.08$
• $K_L \rightarrow \pi^- \mu^+ \nu$	Argonne	1973	$\text{Im}\xi = -0.085 \pm 0.064$
• $K_L \rightarrow \pi^- \mu^+ \nu$	BNL-AGS	1980	$Im\xi = 0.009 \pm 0.030$
• $K^+ \rightarrow \pi^0 \mu^+ \nu$	BNL-AGS	1983	$Im\xi = -0.016 \pm 0.025$

Feature of $K^+_{\mu3} P_T$

- Small standard model contribution
 - Bigi and Sanda "CP violation" (2000)
 - $P_T \sim 10^{-7}$
- Small FSI spurious effects
 - Single photon contribution
 Zhitnitskii (1980)
 - $P_T < \sim 10^{-6}$
 - Two photon contribution Efrosinin et al. PL B493 (2000) 293 $P_T \sim 4 \ge 10^{-6}$
- High sensitivity to CP violation
- beyond the SM
 - Mult-Higgs doublet model
 - Leptoquark model
 - Some Supersymmetric models $P_T \sim 10^{-4} - 10^{-3}$

KEK E246 experiment

Features

- Stopped K⁺ experiment with a SC toroidal spectrometer
- Measurement of <u>all decay kinematics directions</u>
 - Double ratio measurement with small systematic errors

History

- 1992-1995 : detector construction
- 1996-2000 : data taking
 - 1999 : first result published with 1/4 of data $Im\xi = -0.023 \pm 0.007(stat) \pm 0.003(syst)$

[M.Abe et al., Phys.Rev.Lett. 83(1999) 4253]

2001-2003 : analysis

2004 (this conference) : report of the final result

Byproducts

• $K^+ \rightarrow \mu^+ \nu \gamma$: $P_T = -0.0064 \pm 0.0185(\text{stat}) \pm 0.0010(\text{syst})$

[V.Anisimovsky et al., Phys.Lett. B562 (2003) 166]

• $K_{e3}, K_{\pi 2\gamma}, K_{e4}, \dots$

Superconducting toroidal magnet

E246 experimental setup

[J.Macdonald et al.; NIM A506 (2003) 60]

E246 detector

Muon polarimeter

CsI(Tl) and kinematics

Experimental data

Analysis

$K_{\mu3}$ event selection

fwd events : $\cos \theta_{\pi^0(\gamma)} > 0.341$ *bwd* events : $\cos \theta_{\pi^0(\gamma)} < -0.341$

e^+ time spectrum anlysis

 $N_{cw(ccw)}$: integration from 20ns to 6 µs with constant BG subtracted

Asymmetry analysis

- $A_T(y) = [A(y)_{fwd} A(y)_{bwd}] /2$ $A(y)_{f(b)} = \frac{[N_{cw}(y) - N_{ccw}(y)]_{f(b)}}{[N_{cw}(y) + N_{ccw}(y)]_{f(b)}}$
- $P_T(y) = A_T(y) / \alpha(y) < \cos \theta_T >$ $\alpha(y) = A_N(y) / P_N$

Two independent analyses

Two analyses by two teams with

- their own analysis policy and
- event selection methods

	2γ events	1γ events
A2	1221 k	1264 k
A1	918 k	909 k

Combination of the two analyses by resorting of events to 6 data sets

Merits of two analysis method

A1•A2 A1• A2 A1• A2

- Cross check of data quality by A_0 , decay plane rotation θ_r and θ_z and P_T
- Comparison of sensitivity by normal asymmetry A_N and $\langle \cos \theta_T \rangle$
- Check of data quality in e.g. A1 by comparing A1•A2 and A1• A2-bar
- Estimate of systematic error by comparing $\langle \cos \theta_T \rangle$ of A1• A 2 from A1 and A2
- Improvement of statistical error

Data quality check

Null asymmetry is canceled by double ratio (*fwd-bwd*).

Result

 $P_T = -0.0018 \pm 0.0023(\text{stat}) \pm 0.0011(\text{syst})$ ($|P_T| < 0.0051 : 90\%$ C.L.)

 $Im\xi = -0.0055 \pm 0.0073(stat) \pm 0.0036(syst)$ (|Im\xi| <0.016 : 90% C.L.)

Year

Systematic errors

Source of Error	Σ12	fwd/bwd	$\delta P_T \ge 10^4$
e^+ counter r-rotation	X	0	0.5
e^+ counter z-rotation	Х	0	0.2
e^+ counter f-offset	X	0	2.8
e^+ counter r-offset	0	0	<0.1
e^+ counter z-offset	0	0	<0.1
μ^+ counter f-offset	Х	0	<0.1
MWPC ϕ -offset (C4)	Х	0	2.0
CsI misalignment	0	0	1.6
B offset (ε)	Х	0	3.0
B rotation (δ_x)	Х	0	0.4
B rotation (δ_{z})	Х	Х	5.3
<i>K</i> ⁺ stopping distribution	0	0	<3.0
μ^+ multiple scattering	Х	Х	7.1
Decay plane rotation (θ_r)	Х	0	1.2
Decay plane rotation (θ_z)	Х	Х	0.7
$K_{\pi 2}$ DIF background	Х	0	0.6
<i>K</i> ⁺ DIF background	0	Х	< 1.9
Analysis	_	-	38

• Σ_{12} : 12-fold rotational cancellation

Model implications

Three Higgs doublet model

 $\boldsymbol{L} = (2\sqrt{(2)}G_F)^{1/2} \Sigma [\alpha_i U_L K M_D D_R + \beta_i U_R M_U K D_L + \gamma_i N_L M_E E_R] H_i^+ + h.c.$

$$\sum_{k=1}^{u} \sum_{k=1}^{v} \sum_{k=1}^{v} \sum_{k=1}^{u} \sum_{k=1}^{v} \sum_{k$$

• $\operatorname{IIm} \xi \mid < 0.016 \ (90\% \text{ C.L.}) \Rightarrow \operatorname{Im}(\alpha_1 \gamma_1^*) < 544 \quad (\text{at } m_H = m_Z)$ cf. BR $(B \rightarrow X \tau \overline{\nu_\tau}) \Rightarrow \operatorname{Im}(\alpha_1 \gamma_1^*) < 1900 \quad (\text{at } m_H = m_Z)$

Neutron EDM in 3HD model

 $d_n \approx 4/3 \ d_d \propto \operatorname{Im}(\alpha_1 \beta_1^*) \times m_d / m_H^2$

 $v_2/v_3 = m_t/m_{\tau}$ [R.Garisto and G.Kane, Phys. Rev. D44 (1991)2789]

• $|\text{Im}\xi| < 0.016 \ (90\% \ C.L.) \Rightarrow d_n < 9 \times 10^{-27} \ e \ \text{cm}$ cf. $d_n^{\text{exp}} < 6.3 \times 10^{-26} \ e \ \text{cm}$

Summary

- Transverse muon polarization in $K^+ \rightarrow \pi^0 \mu^+ \nu$ decay is a good probe of CP violation beyond the standard model.
- The final result of the KEK-E246 experiment showed no evidence for T violation with $\text{Im}\xi = -0.0055 \pm 0.0073(\text{stat}) \pm 0.0036(\text{syst})$, or $|\text{Im}\xi| < 0.016 (90\% \text{ C.L.})$.
- This limit constrains the parameters of some non-standard CP violation models with high sensitivity.
- We are going to propose a next generation P_T experiment at the high intensity accelerator J-PARC.

Decay plane rotation

B field rotation

- T. Ikeda, et al., Nucl. Instr. and Meth. in Phys. Res. A 401 (1997) 243-262
- $\delta_z = 1.3 \text{ mrad} \rightarrow \delta P_T(\delta_z) = 5 \times 10^{-4}$

CsI(Tl) photon detector

Segmentation Number of crystals Length of crystals Inner radius Outer radius Solid angle Readout Light yield Equiv. noise level $\Delta \theta = \Delta \phi = 7.5^{\circ}$ 768 25 cm (13.5 X₀) 20 cm 50 cm ~75% of 4π PIN diode 11000 p.e./MeV 65 keV

[D.V.Dementyev et al. Nucl. Instr. Method A440 (2000) 151]

Double ratio measurement

- Offset of the magnetic field
- Inefficiencies of MWPC, etc.

Analysis: methodology

Blind analysis

• Event selection optimization before looking at A_T

• Two independent analyses

- Easy to find any trivial mistakes in data reduction and analysis codes
- Competition with each other for better analysis codes
- Minimize potential human bias in the analysis

Combination of two results

- Analysis of "common" and "uncommon" events to check the event quality
- Makes it possible to estimate systematic error associated with analysis
- Improves the statistical accuracy

