Status report on E566: Hypernuclear γ spectroscopy on ¹²C target

<u>H. Tamura</u>¹, S. Ajimura⁷, K. Aoki², N. Dairaku⁶, Y.Y. Fu⁵, H. Fujioka³, T. Fukuda⁴, K. Futatsukawa¹, K. Hosomi¹, W. Imoto⁴, M. Kawai¹, Y. Kakiguchi², S. Kinoshita¹, T. Koike¹, Y. Ma¹, N. Maruyama¹, M. Mimori¹, S. Minami⁴, Y. Miura¹, K. Miwa⁶, Y. Miyagi¹, T, Nagae², D. Nakajima³, H. Naoumi², K. Shirotori¹, T. Suzuki¹, T. Takahashi^{*}, T.N. Takahashi³, K. Tanida⁸, N. Terada¹, A. Toyoda², K. Tsukada¹, M. Ukai¹, S.H. Zhou⁵

¹ Department of Physics and Cyclotron RI Center, Tohoku University

² Institute for Particle and Nuclear Studies, KEK

³ Department of Physics, University of Tokyo

⁴ Osaka Electro-Communication University

⁵ China Institute of Atomic Energy

⁶ Department of Physics, Kyoto University

⁷ Department of Physics, Osaka University

⁸ RIKEN

1 Introduction

The E566 experiment investigates structures of ${}^{12}_{\Lambda}$ C and ${}^{11}_{\Lambda}$ B hypernuclei by means of highprecision γ -ray spectroscopy technique developed by our group. The ${}^{12}_{\Lambda}$ C and ${}^{11}_{\Lambda}$ B hypernuclei were produced by the (π^+, K^+) reaction on 12 C target, in which ${}^{11}_{\Lambda}$ B was produced through proton emission of unbound excited states of ${}^{12}_{\Lambda}$ C. We measured the missing mass of hypernuclear production employing the K6 beam line and the Superconducting Kaon Spectrometer (SKS), and detected their γ rays by using the germanium (Ge) detector array "Hyperball2", the upgraded version of Hyperball with a doubled efficiency.

One of the purposes of the experiment is to produce ${}^{11}_{\Lambda}B(7/2^+)$ from the p_{Λ} states of ${}^{12}_{\Lambda}C(2^+)$ and to measure the reduced transition probability B(M1) of the Λ -spin-flip transition ${}^{11}_{\Lambda}B(7/2^+ \rightarrow 5/2^+)$ with the Doppler shift attenuation method, for the purpose of extracting an effective g-factor of a Λ in a nucleus and investigating a possible modification of the magnetic moment of a Λ . The other purpose is to investigate the ΛN interaction, including the effect of ΣN - ΛN coupling force, from the ${}^{12}_{\Lambda}C$ and ${}^{11}_{\Lambda}B$ level energies. From our previous experiment (BNL E930), the ${}^{10}_{\Lambda}B(1^-, 2^-)$ spacing was found to be less than 100 keV from non-observation of the $1^- \rightarrow 2^-$ transition [1]. This result gives the spin-spin interaction strength of $\Delta < 0.3$ MeV (see Sect. 3.1), which seems to contradict to the value of $\Delta = 0.43$ MeV derived from the ${}^{7}_{\Lambda}\text{Li}(3/2^+, 1/2^+)$ spacing [2]. The new data on ${}^{11}_{\Lambda}B$ and ${}^{12}_{\Lambda}C$ will help us solve this "puzzle".

The experiment was carried out in November in 2005. We irradiated 2×10^{12} pions on a 18.6 g/cm² olyethylene target. The new apparatus, Hyperball2, showed a good performance as expected through the experiment. The data analysis is in the final stage. We will obtain the final results in a few months. Preliminary results have been published in Ref. [3].

Figure 1: Missing mass sepctrum of ${}^{12}C(\pi^+, K^+)$ reaction plotted in the scale of binding energy of Λ in ${}^{12}_{\Lambda}C$ (preliminary). Theoretically calculated ${}^{12}_{\Lambda}C$ level energies and yields are shown together.

2 Preliminary results

Figure 1 shows the obtained missing mass sepctrum of the ${}^{12}C(\pi^+, K^+)$ reaction. Considering the target thickness, the spectrum shape is consistent with the previous ${}^{12}C(\pi^+, K^+)^{12}_{\Lambda}C$ spectrum.

When the bound-state region of ${}^{12}_{\Lambda}C$ ($-14 < -B_{\Lambda} < -4$ MeV) is selected, we observed a γ -ray peak at 2667.3 \pm 2.8 keV (preliminary) after Doppler shift correction (see Fig. 2 (a)). This is assigned to the ${}^{12}_{\Lambda}C(1^-_2 \rightarrow 2^-)$ transition as shown in Fig. 3, because the γ -ray energy is consistent with the excitation energy of ${}^{12}_{\Lambda}C(1^-_2)$ (2.6 MeV) measured in the previous ${}^{12}C(\pi^+, K^+)^{12}_{\Lambda}C$ experiment [4] and this transition is expected to have the largest yield in ${}^{12}_{\Lambda}C$.

When the p_{Λ} -state region of ${}^{12}_{\Lambda}$ C ($-5 < -B_{\Lambda} < 4$ MeV) is selected, we observed a γ -ray peak at 261.6±0.24 keV (preliminary), as shown in Fig. 2 (b). It is uniquely assigned to the spin-flip M1 transition between the ${}^{11}_{\Lambda}$ B ground-state doublet, ${}^{11}_{\Lambda}$ B(7/2⁺ \rightarrow 5/2⁺) (see Fig. 3), because the energy of the $p_{\Lambda}(2^+)$ state of ${}^{12}_{\Lambda}$ C allows the decay only to the ground state doublet of ${}^{11}_{\Lambda}$ B. The ${}^{11}_{\Lambda}$ B(1/2⁺ \rightarrow 5/2⁺) transition at 1482 keV, which was identified in the previous 11 B(π^+, K^+) experiment [5], was also observed in this experiment when a higher excitation energy region was selected.

As a result, we determined the level schemes of ${}^{12}_{\Lambda}$ C and ${}^{11}_{\Lambda}$ B as shown in Fig. 3.

Figure 2: γ -ray spectrum of ${}^{11}_{\Lambda}B$ and ${}^{12}_{\Lambda}C$ measured by the ${}^{12}C(\pi^+, K^+)$ reaction at KEK (E566). (a) shows the spectra when the s_{Λ} state region of ${}^{12}_{\Lambda}C$ (-14 MeV < $-B_{\Lambda} < -4$ MeV) is selected and before (top) and after (bottom) Doppler shift correction is applied. The γ ray observed at 2667.3±2.8 keV (preliminary) is assigned to the transition of ${}^{12}_{\Lambda}C(1^- \to 2^-)$. (b) shows the spectrum when the $p_{\Lambda}(2^+)$ state region of ${}^{12}_{\Lambda}C$ (-5 MeV < $-B_{\Lambda} < 4$ MeV) is selected. The observed γ -ray peak is assigned to the ${}^{11}_{\Lambda}B(7/2^+ \to 5/2^+)$ transition after ${}^{12}_{\Lambda}C(2^+) \to {}^{11}_{\Lambda}B + p$ decay.

3 Discussion

3.1 ΛN interaction

From previous data of the Hyperball experiments, all the ΛN spin-dependent interaction strengths have been determined as [6]

$$\Delta = 0.43 \text{ MeV}, \quad S_{\Lambda} = -0.01 \text{ MeV}, \quad S_N = -0.4 \text{ MeV}, \quad T = 0.03 \text{ MeV}.$$
 (1)

Here, the strength parameters are radial integrals with the $s_{\Lambda}p_N$ wave function for the spin-spin term $V_{\sigma}(r)$, the Λ -spin-dependent spin-orbit term $V_{\Lambda}(r)$, the nucleon-spin-dependent spin-orbit term $V_N(r)$, and the tensor term $V_T(r)$, respectively, of the effective ΛN interaction [7, 8]:

$$V_{\Lambda N}^{eff}(r) = V_0(r) + V_{\sigma}(r) \, \boldsymbol{s}_{\Lambda} \boldsymbol{s}_N + V_{\Lambda}(r) \, \boldsymbol{l}_{\Lambda N} \boldsymbol{s}_{\Lambda} + V_N(r) \, \boldsymbol{l}_{\Lambda N} \boldsymbol{s}_N + V_T(r) \left[3(\boldsymbol{\sigma}_{\Lambda} \hat{\mathbf{r}})(\boldsymbol{\sigma}_N \hat{\mathbf{r}}) - \boldsymbol{\sigma}_{\Lambda} \boldsymbol{\sigma}_N \right]$$
(2)

The parameters Δ , S_{Λ} , S_{N} , and T were already determined from the level spacings of ${}^{7}_{\Lambda}\text{Li}(3/2^{+}, 1/2^{+})$ [2], ${}^{9}_{\Lambda}\text{Be}(3/2^{+}, 5/2^{+})$ [9, 1], ${}^{7}_{\Lambda}\text{Li}(5/2^{+}, 1/2^{+})$ [2], and ${}^{16}_{\Lambda}\text{O}(1^{-}, 0^{-})$ [10], respectively.

This parameter set also explains most of the other data of *p*-shell hypernuclei obtained in the recent Hyperball experiments [11]. However, all the $^{11}_{\Lambda}B$ and $^{12}_{\Lambda}C$ level energies measured in the present experiment are significantly deviated from the predicted values from the parameter set 1. According to a shell model calculation by Millener, the $^{11}_{\Lambda}B$ ground-state doublet $(7/2^+, 5/2^+)$ spacing is described as [6]

$$E(7/2^+, 5/2^+) = 1.025\Delta + 2.467S_{\Lambda} + 0.027S_N - 2.259T + \Sigma\Lambda(55 \text{ keV}),$$

Figure 3: Observed γ transitions and level schemes of ${}^{11}_{\Lambda}B$ and ${}^{12}_{\Lambda}C$ determined in this experiment.

where $\Sigma\Lambda$ stands for the effect of ΣN - ΛN coupling force estimated with the Nijmegen hyperon-nucleon interaction model NSC97f. From this equation, the observed energy gives $\Delta = 0.33$ MeV, being smaller than the value of $\Delta = 0.43$ MeV extracted from the $_{\Lambda}^{7}\text{Li}(3/2^+, 1/2^+)$ spacing. The recent data of $_{\Lambda}^{16}\text{O}(2^-, 1^-)$ spacing from BNL E930 [12], which are also sensitive only to Δ , corresponds to $\Delta = 0.33$ MeV. Therefore, we may conclude that the Δ value determined to be 0.43 MeV from $_{\Lambda}^{7}\text{Li}$ should be slightly reduced to 0.33 MeV for heavier ($A \geq 10$) *p*-shell hypernuclei [6]. This result partly solves the puzzle of the small $_{\Lambda}^{10}\text{B}(1^-, 2^-)$ spacing giving $\Delta < 0.3$ MeV.

The ${}^{12}_{\Lambda}C$ ground-state doublet $(1^-_1, 0^-)$ spacing, which is expected to provide a clue to extract the ΛNN three-body force effect, has not been determined in the present data analysis. We aimed at detecting both $1^-_2 \rightarrow 1^-_1, 0^-$ transitions but one of them $(1^-_2 \rightarrow 1^-)$ was not observed because of lower statistics than expected as well as a possible small branching ratio.

The observed ${}^{11}_{\Lambda}B(1/2^+, 5/2^+)$ spacing (1482 keV) and the ${}^{12}_{\Lambda}C(1_2^-, 2^-)$ spacing (2667 keV) gives $S_N = -0.9$ and -0.7 MeV, respectively. It is significantly different from the value of $S_N = -0.4$ MeV, which reproduces most of the other hypernuclear data. The contribution of the S_N term is sensitively affected by the wave functions of core nuclei. This discrepancies in the middle of the *p*-shell may be caused by inaccuracy of the wave functions of core nuclei in the shell model.

$3.2 \quad B(M1) \text{ measurement}$

Since the ${}^{11}_{\Lambda}B(7/2^+ \rightarrow 5/2^+)$ transition energy (262 keV) was found to be much smaller than expected (450 keV) because of the deviation of the Δ value, the lifetime of the $7/2^+$ state, being proportional to $1/E_{\gamma}^3$, is much longer than expected. Therefore, Doppelr shift attenuation method cannot be applied to this transition. Actually, the $7/2^+ \rightarrow 5/2^+ \gamma$ -ray peak was not broadened by Doppler effect and the information of the lifetime cannot be extracted.

4 Future prospects at J-PARC

We will continue our studies of hypernuclear γ -ray spectroscopy at J-PARC, where we employ the (K^-,π^-) reaction using intense K^- beams from the K1.8 or K1.1 beam lines. We are constructing a larger Ge detector array, Hyperball-J [13], which is featured by newly developed techniques necessary to tolerate higher counting rates, such as a mechanical cooling method, background suppression counters with PWO scintillator, and a waveform readout method.

The first experiment titled " γ spectroscopy of light hypernuclei" [14] obtained a stage-2 approval as one of the Day-1 experiments. The purposes of this experiment are (1) B(M1) measurement in ${}^{7}_{\Lambda}\text{Li}(3/2^+ \rightarrow 1/2^+)$, (2) detailed studies of ΛN interaction from ${}^{10}_{\Lambda}\text{B}$ and ${}^{11}_{\Lambda}\text{B}$, (3) investigation of charge symmetry breaking in ΛN interaction and production of spin-flip states from ${}^{4}_{\Lambda}\text{He}$, and (4) study of ΛN interaction in sd-shell hypernuclei from ${}^{19}_{\Lambda}\text{F}$. After the E13 experiments, we are planning to perform various experiments on a wide range of hypernuclei up to ${}^{208}_{\Lambda}\text{Pb}$, neutron-rich hypernuclei such as ${}^{7}_{\Lambda}\text{He}$, B(M1) measurements of various hypernuclei to study isospin and nuclear density dependence of g_{Λ} value.

References

- [1] H. Tamura, Nucl. Phys. A754 (2005) 58c.
- [2] H. Tamura *et al.*, Phys. Rev. Lett. **84** (2000) 5963.
- [3] Y. Ma et al., Eur. Phys. J. A 33 (2007) 243.
- [4] H. Hotchi *et al.*, Phys. Rev. C 64 (2001) 044302.
- [5] Y. Miura *et al.*, Nucl. Phys. **A754** (2005) 75c.
- [6] D.J. Millener, Topics in Strangenss Nuclear Physics, Ed. P.Bydzovsky et al., Springer, 2007, p.31.
- [7] R.H. Dalitz and A. Gal, Ann. Phys. **116** (1978) 167.
- [8] D.J. Millener, A. Gal, C.B. Dover and R.H. Dalitz, Phys. Rev. C31 (1985) 499.
- [9] H. Akikawa *et al*, Phys. Rev. Lett. **88** (2002) 082501.
- [10] M. Ukai *et al.*, Phys. Rev. Lett. **93** (2004) 232501.
- [11] M. Ukai *et al.*, Phys. Rev. C **73** (2006) 012501(R).
- [12] M. Ukai et al., Eur. Phys. J. A 33 (2007) 247.
- [13] T. Koike *et al.*, Proc. 9th Int. Conf. on Hypernuclear and Strangeness Particle Physics, Ed. J. Pochodzalla and Th. Walcher, Springer, 2007, p.25.
- [14] H. Tamura et al., J-PARC 50-GeV PS proposal E13 (2006), http://j-parc.jp/NuclPart/pac_0606/pdf/p13-Tamura.pdf.