E566: Hypernuclear γ **Spectroscopy** on ¹²C Target

Dept. of Physics, Tohoku University

H. Tamura

Contents

- **1.** Introduction
- 2. Purposes of E566
- 3. Setup and Hyperball2
- 4. Results and discussion
- **5.** Further experiments at J-PARC

Y. Ma et al., EPJ A33 (2007) 243

E566 Collaboration list

- Tohoku Univ.H. Tamura, K. Futatsukawa, K. Hosomi, M. Kawai,
S. Kinoshita, T. Koike, Y. Ma, N. Mayuyama, M. Mimori,
Y. Miura, Y. Miyagi, K. Shirotori, T. Suzuki, N. Terada,
K. Tsukada, M. Ukai,
- KEKK. Aoki, H. Fujioka, Y. Kakiguchi, T. Nagae, D. Nakajima,H. Noumi, T. Takahashi, T.N. Takahashi
- CIAE (Beijing) Y. Fu, S.H. Zhou
- Kyoto Univ. M. Dairaku, K. Miwa
- Osaka Univ. S. Ajimura
- RIKEN K. Tanida

1. Introduction

<u>Present Status of</u> <u>Λ Hypernuclear Spectroscopy</u>

Updated from: O. Hashimoto and H. Tamura, Prog. Part. Nucl. Phys. 57 (2006) 564.

Hyperball

(Tohoku/ Kyoto/ KEK, 1998)

- Large acceptance for small hypernuclear γ yields
 Ge (r.e. 60%) x 14
 Ω ~ 15%, ε ~ 3% at 1 MeV
- High-rate electronics for huge background
- BGO counters for π⁰ and Compton suppression

Resolution of hypernuclear spectroscopy 1 MeV -> 2 keV FWHM

First experiment (1998): KEK-E419 for ⁷ Li

Present status of precision hypernuclear γ-ray spectroscopy

Motivation of Hypernuclear γ Spectroscopy

Precise measurement (∆E = 1~2 MeV -> 2 keV FWHM) of structures of hypernuclei

Baryon-Baryon interaction

- Unified picture of baryon-baryon interactions
- Understand short-range nuclear forces in terms of quarks
- Necessary to understand high density nuclear matter and strangeness mixing in neutron stars

Impurity effects in nuclear structure

Changes of size/shape, symmetry, cluster/shell structure,..

Nuclear medium effects of baryons

Probed by hyperons free from Pauli effect

2. Purposes of E566

Purposes of the Experiment

¹²C (π^+ , K⁺ γ) ¹²_AC / ¹¹_AB with Hyperball2 + SKS at K6 line

$\mu_{\underline{\Lambda}}$ in nucleus

Why interesting?

Nuclear medium effect for baryons

Partial restoration of chiral symmetry....Reduction of mass? Swelling?

-> μ_N changes? Can be investigated using a Λ (free from Pauli) in 0s orbit

- + Quark exchange current (Pauli effect between quarks)
- + Meson exchange current

f9∧ swelling?

 $\mu_q = \frac{cm}{2m_q c}$ $m_q : \text{Constituent quark mass}$

Calculated. Small (a few %) for Λ .

How to measure it?

Direct measurement of μ -- extremely difficult. "Dream Experiment" **B(M1) of** Λ -spin-flip **M1 transition -> g** $_{\Lambda}$

 $\Gamma_{\gamma} = \text{Br} / \tau = (16\pi/9\hbar) (E_{\gamma}/\hbar c)^{3} B(M1)$ $= 1.76 \times 10^{13} E_{\gamma [\text{MeV}]}^{3} B(M1) [\mu_{N}^{2}]$ $B(M1) = (2J_{up} + 1)^{-1} |\langle \Psi_{low} \parallel \mu \parallel \Psi_{up} \rangle|^{2}$ $= (2J_{up} + 1)^{-1} |\langle \Psi_{\Lambda\downarrow} \Psi_{c} \parallel \mu \parallel \Psi_{\Lambda\uparrow} \Psi_{c} \rangle|^{2}$ $\mu = g_{c} J_{c} + g_{\Lambda} J_{\Lambda} = g_{c} J + (g_{\Lambda} - g_{c}) J_{\Lambda}$ $\propto (g_{\Lambda} - g_{c})^{2}$

<u>ΛN Spin-dependent interactions</u> and γ spectroscopy

■ Two-body ΛN effective interaction

$$V_{\Lambda N}^{\text{eff}} = V_{0}(r) + V_{\sigma}(r) \tilde{s}_{\Lambda} \tilde{s}_{N} + V_{\Lambda}(r) \tilde{t}_{\Lambda N} \tilde{s}_{\Lambda} + V_{N}(r) \tilde{t}_{\Lambda N} \tilde{s}_{N} + V_{T}(r) S_{12}$$

$$V_{\Lambda N} \tilde{s}_{\Lambda} + V_{\Lambda}(r) \tilde{t}_{\Lambda N} \tilde{s}_{\Lambda} + V_{N}(r) \tilde{t}_{\Lambda N} \tilde{s}_{N} + V_{T}(r) S_{12}$$

$$V_{\Lambda N} \tilde{s}_{N} + V_{T}(r) S_{12}$$

$$P - shell: 5 radial integrals for s_{\Lambda} p_{N} w.f.$$

$$Well known \quad \Delta = \int V_{\sigma}(r) |u(r)|^{2} r^{2} dr, \quad r = r_{S_{\Lambda}} - r_{p_{N}}$$

$$Dalitz and Gal., Ann. Phys. 116 (1978) 167$$

$$Millener et al., Phys. Rev. C31(1985) 499$$

$$Level spacing: linear combination$$

$$(K, \pi^{-}) \text{ or } (\pi^{+}, K^{+})$$

$$MN spin-dependent interactions \leq 0.1 \text{ MeV}$$

$$\Delta r S_{\Lambda}, T$$

$$Spin tegrate (\Delta E-2 \text{ keV})$$

Spin-spin strength (Δ) and Λ - Σ coupling (Millener)

3. Setup and Hyperball2

Hyperball-2

 Reset-type "Clover Ge" (r.e.>125%) newly developed at Eurisys Measures
 BGO counters (from China)

- Photo-peak efficiency x2
 - ~ 2.5% -> 5% at 1 MeV
- High-rate performances same as Hyperball

VME-based fast readout

Setup and beam status

4. Results and discussion

Dependence on the mass gate position

Another evidence

Spin-spin strength (Δ) and Λ - Σ coupling (Millener)

 $\Lambda\Sigma$ effect estimated from NSC97f $S_A = -0.01$ MeV, T = 0.03 MeV from exp.

<u>More consistency test on Δ </u>

¹⁶O (K⁻, $\pi^-\gamma$) BNL E930('01) <u> 0.627Δ </u> + 1.37S_A - 0.003S_N - 1.75T + 0.092($\Delta\Sigma$) $w/\Delta\Sigma: \Delta = 0.33 \text{ MeV}$ 2⁻ 6.784 6.176 1⁻ 6.560 3/2 $\Delta \sim 0.30$ MeV explains all the Δ -dominating doublet spacings **M1** $({}^{10}_{\Lambda}B, {}^{11}_{\Lambda}B, {}^{12}_{\Lambda}C, {}^{16}_{\Lambda}O)$ except for ${}^{7}_{\Lambda}Li$ Why is Δ for $^{7}_{\Lambda}$ Li large (~0.43 MeV)? 1/2 0.026 Size effect ? But Δ should be smaller 0 ¹⁵O ¹⁶Δ for loosely-bound nucleus such as ⁷

Li.

5. Further experiments at J-PARC

Best K: beam momentum

p_K = 1.1 GeV/c : K1.1 + "SKS" (ideal) p_K = 1.5 GeV/c : K1.8 + SKS (realistic)

High K/ π ratio to minimize radiation damage to Ge detectors

-> Double-stage separation. K1.8BR is not good.

Proposed DAY-1 experiment

(K⁻, $\pi^-\gamma$) at p_K = 1.5 GeV/c

DAY1 program: Feasible even with low intensity beam (~2µA)

(4) Charge symmetry breaking in ΛN interaction and spin-flip property in hypernuclear production

⁴_{Λ}He : Largest CSB is suggested but previous data is suspicious.

Easiest to observe a spin-flip state (100 hrs)

Proposed B(M1) measurement

Difficulties in B(M1) measurement

- **Doppler Shift Attenuation Method works only when** $\tau \leq t_{stop}$
- τ is very sensitive to E_γ because B(M1) $\propto 1/\tau \propto E_{\gamma}^3$. But E_γ is unknown.
- Cross sections and background cannot be accurately estimated. Previous attempts: ${}^{10}_{\Lambda}B$, ${}^{11}_{\Lambda}B$ (E, too small -> τ >> t_{stop}). ${}^{7}_{\Lambda}Li$ (byproduct: indirect population)

To avoid ambiguities, we use the best-known hypernucleus, ${}^{7}_{\Lambda}$ Li.

- Energies of all the bound states and B(E2) were measured,
- γ-ray background level was measured,
- cross sections are reliably calculated.

Expected yield and sensitivity

Yield estimate

Hyperball-J Under construction

- Ge (single, r.e.~60%) x ~32
 → peak efficiency ~6% at 1 MeV (x ~3 of Hyperball)
- Mechanical cooling
 - -- Lower temp. for less radiation damage
 - -- Save space for flexible arrangement
- PWO background suppression counters replaced from BGO for higher rate
- Waveform readout (under development)
 => Rate limit ~2x10⁷ particles /s
 (x5 of Hyperball)

Lower half

<u>Further plans of γ spectroscopy</u> K1.8-> K1.1

Reaction / p (GeV/c) ; Beamline ; Features

(1) Complete study of <u>light (A<30)</u> hypernuclei ...,²⁰ Ne, ²³ Na, ²⁷ Al / ²⁸ Si (K⁻,π⁻) p= 1.1 and 0.8; K1.1; γγ coin, angular corr., B(E2),...

"Table of Hyper-Isotopes" ΛN interaction ($\Lambda N - \Sigma N$, p-wave, ...) Partly in E13 Shrinkage, collective motion, ...

- (2) Systematic study of <u>medium and heavy</u> hypernuclei ${}^{89}_{\Lambda}$ Y, ${}^{139}_{\Lambda}$ La, ${}^{208}_{\Lambda}$ Pb (K⁻, π -) p=0.8-1.8 ; K1.1 and K1.8 ; p-wave Λ N interaction
- (3) <u>Hyperfragments</u> ${}^{8}_{\Lambda}$ Li, ${}^{8}_{\Lambda}$ Be, ${}^{9}_{\Lambda}$ B,...

K⁻-in-beam (stopped K⁻) p=0.8 ; K1.1 ; p/n-rich hypernuclei,

- (4) <u>n-rich and mirror</u> hypernuclei ⁷_ΛHe, ⁹_ΛLi, ¹²_ΛB...
 (K⁻,π⁰) p= 1.1 and 0.8 ; K1.1 ; charge sym.break., shrinkage of n-halo,
- (5) <u>B(M1)</u> using Doppler shift ${}^{7}_{\Lambda}$ Li and heavier (K⁻, π^{-}) p= 1.1 and (π^{+} ,K⁺) p= 1.05 ; K1.1 ; μ_{Λ} in nucleus
- (6) <u>B(M1)</u> using γ -weak coincidence (K⁻, π ⁻) p= 1.1 and 0.8 ; K1.1 ; ρ , T dependence of μ_{Λ} in nucleus

S=-2

Reaction / p (GeV/c) ; Beamline ; Features (7) Ξ atom X rays (K⁻, K⁺) p=1.8 GeV/c; K1.8 ; Ξ N interaction (8) $\Lambda\Lambda$ -hypernuclei (K⁻, K⁺) p=1.8 GeV/c; K1.8 ; $\Lambda\Lambda$, Ξ N- $\Lambda\Lambda$ interactions

Summary

- ¹²C(π⁺,K⁺γ)¹¹_ΛB,¹²_ΛC experiment was performed at K6/SKS and Hyperball2. Hyperball2 (upgraded Hyperball) worked well.
- We observed five transitions:
 - ¹²_AC(1⁻->2⁻) at 2.67 MeV (new)
 - ${}^{12}_{\Lambda}C(1^{-}>1^{-})$ at 2.83 MeV (new, 2.8 σ significance)
 - $^{11}_{\Lambda}B(7/2^+->5/2^+)$ at 0.262 MeV (also observed in E518 w/o assignment)
 - $^{11}_{A}B(1/2^+-5/2^+)$ at 1.48 MeV (also observed in E518)
 - $^{11}_{\Lambda}B(3/2^+->1/2^+?)$ at 0.505 MeV (also observed in E518 w/o assignment)
- ${}^{11}_{\Lambda}B(7/2^+,5/2^+)$, ${}^{12}_{\Lambda}C(1^-,1^-)$, ${}^{16}_{\Lambda}O(1^-,2^-)$ can be explained by $\Delta \sim 0.3$ MeV, and ${}^{10}_{\Lambda}B(3^+,2^+)$ is also consistent. " ${}^{10}_{\Lambda}B$ puzzle" is now " ${}^{7}_{\Lambda}Li$ puzzle". The calculated ΣN - ΛN coupling effect looks OK.
- **I** ${}^{11}_{\Lambda}B(7/2^+->5/2^+)$ energy is too small for B(M1) measurement.
- J-PARC E13 (γ spectroscopy of light Λ hypernuclei) is approved as one of the Day-1 experiment at K1.8.
- It aims at B(M1) measurement (⁷_ΛLi), more p-shell data for ΛN interaction (¹⁰_ΛB, ¹¹_ΛB), charge symmetry breaking (⁴_ΛHe), radial dependence of ΛN interaction (¹⁹_ΛF)
- Hyperball-J and SksMinus detectors are under preparation.