KEK-PS External Review, Jan 22-23, 2008 Seminar Hall, Bldg.4 KEK

E438: Study of Σ -Nucleus Potential by the (π , K⁺) Reaction on Heavy Nuclei

Hiroyuki Noumi RCNP, Osaka-U for E438 Precision Hypernuclear Spectroscopic Data reveal *the Baryon-Baryon Interactions* in collaboration with Precision Theoretical Calculations

Spin-Spin, Spin-Orbit, Tensor Spin-Isospin dependence Coupled Channels Single-Particle Structure: B_Y→U_Y SS, LS splittings Multi-body Effect (Many body force)

In Λ hypernuclear System, we have demonstrated that the frameworks work very well.

We expect that it can be applicable to the Ξ (or ΛΛ) Hypernuclear System, which will be examined in J-PARC The Question to be asked for E438 was:

"Is the Σ -Nucleus Potential Attractive or Repulsive?"

Situation in Σ -Nucleus System

OIsospin dependent U_{Σ} in light systems

- a bound state in A=4 at KEK (R.S. Hayano et al., PLB231(1989)355)

at BNL (T. Nagae at al., PRL80(1998)1605)

- systematics of (K⁻, π^{\pm}) in A=4,6,9 (S. Bart et al., RL83(1999)5238)
- $O\Sigma^{-}$ atomic X ray data suggest that...
 - attractive/m. absorptive in tp-potential
 - repulsive/s. absorptive in DD-potential

(C.J. Batty, E. Friedman, and A. Gal, PTP117(1994)227)

ONo other data is available...

- Poor YN Scattering Data
- (K⁻, π^{\pm}) spectra on A \leq 16

 V_{Σ} (Re U_{Σ})>-10 MeV from ¹²C(stopped K⁻, π^+)

Histogram and closed cirles: T. Nagae et al., PRL80(`98)1605

Strong Isospin–Dependence of Σ –Nucleus Potential

 (K^{-}, π^{\pm}) spectra A ≤ 16 ; insufficient statistics, no BG free no peak

Σ^{-} -nucleus optical potentials in ${}^{27}Al+\Sigma^{-}$

E438: Study of Σ -nucleus potential by the (π ,K⁺) reaction on heavy nuclei

Inclusive (π^-, K^+) spectra at $p_{\text{beam}} = 1.2 \text{ GeV}/c$ on CH₂, Si, Ni, In and Bi were measured at KEK-PS K6 with SKS in Oct. & Dec., 1999.

- Energy Resolutions 3.3~5.2 MeV (depend on t_{TGT}) maintain a sensitivity to W_{Σ} .
- Energy/Cross Section Scales calibrated by $p(\pi^-, K^+)\Sigma^-$.
- Large Solid Angle Wide Mom. Acceptance covered by SKS.
- Clear Event Selection (BG free)

Energy Scale Energy Resolution

Elementary Peak 259.23±0.13 MeV/c² (c.f. 259.18±0.03, PDG)

Cross Section Scale

Measured Inclusive (π ,K⁺) Spectra on C, Si, Ni, In, & Bi

Spectrum Analysis based on DWIA

Inclusive (π^-, K^+) Spectrum

$$d^{2}\sigma/d\Omega dE = \beta \cdot \overline{d\sigma/d\Omega}_{elem} \cdot S(E)$$

Strength Function:

$$\begin{split} \mathcal{S}(E) &= -1/\pi \operatorname{Im} \sum_{\alpha \alpha'} \int dr dr' \left\{ f^{+}_{\alpha}(r') G_{\alpha \alpha'}(E;r',r) f_{\alpha'}(r) \right\} \\ f_{\alpha}(r) &= \chi^{(-)} * (R) \chi^{(+)}(R) \langle \alpha | \psi_{N}(r) | i \rangle, R = (M_{c}/M_{hy}) r \end{split}$$

Green's Function:

$$G_{\alpha \alpha}(E;r',r) = \langle \alpha | \psi_{\Sigma}(r) \frac{1}{E - H + i\eta} \psi_{\Sigma}(r') | \alpha' \rangle$$

$$\blacktriangleright \quad (\frac{\hbar^2}{2\mu}\Delta + E - U_{\Sigma})G(E;r',r) = -\delta(r'-r)_4$$

Fermi-averaging of the Elementary Cross Section

Concluding Remarks of E438

- 1. Inclusive (π^-, K^+) spectra on CH₂, Si, Ni, In, & Bi were measured with a good resolution (3~5 MeV in FWHM).
 - 1.1 The measured spectra show a similar shape.
 - 1.2 <u>No peak</u> structure in the bound region
 - 1.3 The maximum at $-B_{\Sigma} > 120 \text{ MeV}$
- 2. The measured spectra on Si, Ni, In, & Bi were compared to calculated ones within the framework of the DWIA.
 - 2.1 A repulsive Σ -nucleus potential with a non-zero size of the imaginary part was required to reproduce the measured (π^-, K^+) spectra in shape.
 - 2.2 This framework was successfully applied to reproduce the (π⁺,K⁺) spectrum on C.
 Fermi-averaging of the elementary reaction on mass-shell condition is required. → Optimal Fermi Averaging 18

E438

VOLUME 89, NUMBER 7

12 AUGUST 2002

Sigma-Nucleus Potential in A = 28

H. Noumi,¹ P. K. Saha,^{1,*} D. Abe,² S. Ajimura,³ K. Aoki,¹ H. C. Bhang,⁴ T. Endo,² Y. Fujii,² T. Fukuda,^{1,*} H. C. Guo,⁵ K. Imai,⁷ O. Hashimoto,² H. Hotchi,^{6,†} E. H. Kim,⁴ J. H. Kim,⁴ T. Kishimoto,³ A. Krutenkova,⁸ K. Maeda,² T. Nagae,¹ M. Nakamura,⁶ H. Outa,¹ M. Sekimoto,¹ T. Saito,^{2,‡} A. Sakaguchi,³ Y. Sato,^{1,2} R. Sawafta,⁹ Y. Shimizu,^{3,*} T. Takahashi,² L. Tang,¹⁰ H. Tamura,² K. Tanida,⁶ T. Watanabe,² H. H. Xia,⁵ S. H. Zhou,⁵ L. H. Zhu,⁷ and X. F. Zhu⁵ ¹High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan ²Department of Physics, Tohoku University, Sendai 980-8578, Japan ³Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan ⁴Department of Physics, Seoul National University, Seoul 151-742, Korea ⁵Department of Nuclear Physics, CIAE, P.O. Box 275(80), Beijing 102413, China ⁶Graduate School of Science, University of Tokyo, Tokyo 113-003, Japan ⁷Department of Physics, Kyoto University, Sakyo, Kyoto 606-8502, Japan ⁸Institute of Theoretical and Experimental Physics, Moscow 117218, Russia ⁹Physics Department, North Carolina A&T State University, Greensboro, North Carolina 27411 ¹⁰Department of Physics, Hampton University, Hampton, Virginia 23668 (Received 16 December 2001; published 30 July 2002)

> We have studied the (π^-, K^+) reaction on a silicon target to investigate the sigma-nucleus potential. The inclusive spectrum was measured at a beam momentum of 1.2 GeV/c with an energy resolution of 3.3 MeV (FWHM) by employing the superconducting kaon spectrometer system. The spectrum was compared with theoretical calculations within the framework of the distorted-wave impulse approximation, which demonstrates that a strongly repulsive sigma-nucleus potential with a nonzero size of the imaginary part reproduces the observed spectrum.

DOI: 10.1103/PhysRevLett.89.072301

PACS numbers: 21.80.+a, 13.75.Ev, 25.80.Hp, 25.80.Nv

of a Σ hyperon in the nuclear medium. Σ -nucleus potential is still unclear because

The sigma(Σ)-nucleus potential describe Papers: published in PRL89(2002)072301 PRC70(2004)044613

Recent Theoretical Analysis

Comparison with resent studies Compiled by T. Harada

Impact of the repulsive Σ -Nucleus Potential on Hyperon Constituent in Neutron Star Cores S. Balberg and A. Gal, NPA625(1997)435 10[°] (a) A p,e e fractions 10⁻¹ Equation of state for dense matter 10^{2} Normal (b) ⁿ Relative Fraction p,e $V_A \sim V_\Sigma$: attractive -Σ2 Hyperon (c) n mixing p,e V_{Σ} : repulsive in NS core 10^{-2} **No Sigma Appears** Λ 10⁻³ 23 0.0 0.5 1.0 Baryon Density (fm⁻³)

Prospects of Σ Hypernuclear Studies

- More precision measurement of the (π, K^+) spectrum over a wide range from the Λ -bound up to Σ -unbound states
 - The Λ region would be sensitive to the ΛN - ΣN coupled channel: conversion width

 \rightarrow E10 for J-PARC

- High resolution Spectroscopy of the low-lying Σ-atomic state via the (K⁻, π⁺) reaction near the recoilless momentum Large Shift of 1s state
- Study of Σ -N interaction using light Σ -nuclear systems \rightarrow H. Tamura's, Lol for J-PARC
- Σ -N and/or Σ -Nucleus Scattering Experiment

 \rightarrow K. Miwa's, LoI for J-PARC