

KEK-PS E548 Study of Kaonic nuclei by the (K⁻, p) reaction

T. Kishimoto Osaka University

Contents

- K-nucleus interaction and Kaonic nuclei
- Production mechanism of kaonic nuclei
 In-flight (K⁻,N) reaction
- (K⁻, n) reaction at BNL: E930
- (K⁻, n) and (K⁻, p) reaction at KEK: E548
 Comparison with theoretical calculation
- Summary

Neutron Stars

No Strangeness ~2 Solar mass

Strangeness ~1.5 Solar mass

 $\rho \sim 3-5 \rho_0$ Nuclear matter with hyperons

Kaon condensation KN Σ term (ss̄) K-nucleus interaction

Jan 23/2008 PS review

M~1.4 solar mass

Hyperons in Neutrons Stars

Negative charged particle

 Σ^- repulsive

Kaon condensation K-N int (Σ term)

K-nucleus interaction

- Kaon condensation in neutron stars
- Atomic X ray data: two solutions
 - deep ~180 MeV K-con (m_{K} ~2.5 ρ U)
 - shalow ~80 MeV no K-con
 - Recent reanalysis (PLB606, 295 '05; NPA770, 84 '06)
 - prefers 180 MeV sol.
- K⁻ production in HI reaction: attractive
- Λ(1405)
 - K⁻ p X ray data
 - repulsive shift: (bound state $\Lambda(1405)$) strongly attractive
 - phenomenological potential (Akaishi Yamazaki)

Jan 23/2 Recent experiments: controversial PS review

(Batty, Friedman, Gal,

PR287,385'97)

- Initial and final wf, q ~ 0.3 GeV/c ~ $p_{\rm F}$

Jan 23/2008 PS review ★Known mechanism (predictable cross section)
 ★Least background (p_N~1.3GeV/c for p_K~1 GeV/c)

Exploratory Experiment at BNL

- E930 parasite
 - ${}^{16}O(K^{-},\pi^{-}\gamma){}^{16}{}_{\Lambda}O$ (Hyperball)
- $P_{K} = 930 \text{ MeV/c} \Rightarrow \text{ suited for } (K^{-}, N) \text{ reaction too}$
- Measured neutrons from the ¹⁶O(K⁻, n) (water)
- Neutron counters
 - 2 sets of Plastic scintillator
 4 layers 100(w)x10(h)x5(t)cm³ + 1cm thick (veto)
 - 0 degrees
 - 6.8 m from the target
- 4.7 G K⁻

Energy Spectrum (Ge cut)

Backgrounds

- 2 nucleon absorption \rightarrow not seen - K⁻ NN \rightarrow YN
- Hyperon production \rightarrow estimated small
 - N(K⁻, π)Y where π scattered backwaords
 - $\Lambda (\Sigma) \rightarrow n \pi$ n: forward
 - Cross section (Gopal), GEANT
- Production of Λ or Σ hypernuclei \rightarrow not seen
 - Should be very small

Little 2 nucleon absorption backgrounds

12

The ¹⁶O(K⁻,n) at BNL

- Deep potential (~200MeV) was suggested
 Appreciable strength in the bound region
- Cross section is consistent
- Negligible contribution from 2 nucleon absorption
- Hydrogen in water target obscured the conclusion
- Limited statistics

• KEK E548 experiment

T. K et al., PTP. Suppl. 149 (2003), 264 Nucl.Phys.A754:383-390,2005

KEK-PS E548

Study of Kaonic Nuclei by the (K⁻,p) reaction

- (K⁻,p) and (K⁻,n) reactions on
 - -¹⁶O (water target)
 - ¹²C (graphite and CH₂ targets)
- Improvements over BNL experiment
 - Proton (KURAMA spectrometer):
 12MeV(σ)@BE=150MeV
 - Neutron counter: ~20msr, 10MeV(σ)@BE=150MeV
 - Decay counter (Nal array): ~0.5 of 4π
- 52 shifts in April/2005

Jan 23/2008 PS review Kaonic nuclei, X particle search (~10 shifts)

Neuron counters

- Plastic scintillator array
 - 2 layers of 5cm thick plastic
 - 1.5m x 1.5m
- Conversion layer
 - Liquid scintillator container
 - 20cm thick 1.5m x 1.5m
- Efficiency and time resolution
- 9.8m from the target

Missing mass spectra

- (K⁻, p) and (K⁻, n) reaction on ¹²C (θ <4.3°)
 - (K⁻, p): little BG inclusive
 - $-(K^{-}, n)$: BG from K_{L} production
 - Comparison with (K⁻, p) and (K⁻, n) reaction
 - multi.(decay)>=1
 - -Eff(BE) ~ constant

Multiplicity ~1.5 for both pion emission and 2 nucleon absorption

Solid line: best fit Re(V)=-190MeV Im(V)=-40 MeV

Dotted line: Chiral Re(V)=-60 MeV Im(V)=-60 MeV

Potential depth by comparison with calculated spectra

Green function method

- Consistent description of bound to unbound region with imaginary part (all final states)
- J. Yamagata, S. Hirenzaki et al., nucl-th/0503039 and 0602021
- T. Hayakawa (PhD)
- Quantitative comparison
 - Potential

Pion emission

- energy dependence
- Re(V) • Im(V(Eex)) $f^{MFG}(E) = 0.8f_1^{MFG}(E) + 0.2f_2^{MFG}(E)$
- Spectrum shape

Two nucleon absorption

Absolute cross section

Effective nucleon number N_{eff}

- $N_{eff} = \sigma({}^{12}C(K^{-}, N)) \sigma(p(K^{-}, N))$ - ~1.5 σ ~20 mb/sr $\frac{2000}{1500}$
- calculation (40 mb for $\sigma(KN)$ and ${}^{\scriptscriptstyle 1000}$
 - N_{eff}(Eik)~1.27
 - $-N_{eff}(Eik) \sim 1.44$ (with A-1 correction)
- Background process
 - Fitting of -BE=100~200 MeV region
 - quadratic function

Jan 23/2008 PS review We are seeing (K-, N) reaction not backgrounds 23

50

100

500

-100

Isospin dependence of potential

attractive interaction is from I=0 KN system Potential depth \propto # of I=0 pairs in a Kaonic nucleus

¹²C(K⁻, n) produce T=0, and T=1 T: total isospin of $^{12}C(K^-, p)$ produce T=1 only a Kaonic nucleus

of I=0 pair T=0 3.5 ¹²C(K⁻, n), T=0, 1 3.0 if 190 MeV T=1 2.5 ¹²C(K-, p), T=1 2.5 then 160 MeV

Consistent with data

Conclusion

Missing mass spectra of ¹²C(K⁻, N) indicate

- ${}^{12}C (K^{-}, n): V_{r} \sim 190 MeV V_{i} \sim -40 MeV,$
- ${}^{12}C (K^{-}, p): V_{r} \sim 160 MeV V_{i} \sim -50 MeV,$
- V_r ~ 200 MeV ⇒ Kaon condensation
- Isospin dependence may be consistent
- Published in PTP 118, 181 (2007)
- Study of ¹⁶O(K-, N): paper preparation – A little deeper potential
- Future study at J-PARC

End of my slides

Backup slides

Decay Modes

- KN attraction ~ Λ(1405) I=0, J^π=1/2⁻
- $\Lambda(1405)$ $\begin{array}{ccc} \pi^{+} \Sigma^{-} \implies \pi^{-} n (1/3) \\ \pi^{-} \Sigma^{+} \implies \pi^{+} n (1/6) \end{array} \end{array} \right\} \begin{array}{c} \pi^{+} \pi^{-} \pi^{-$ (mult.>1)/inclusive L⇒ π⁰ p (1/6) π^{-} 0.55 $\pi^0 \Sigma^0 \Rightarrow \gamma \Lambda \Rightarrow \pi^- p (2/9)$ 0.5 L π⁰ n (1/9) 0.45 Multi~1.5 • Below π threshold 0.4 $\Lambda(1405)(p,n) \rightarrow \Sigma(p,n)$ 0.35 $\Sigma \rightarrow \pi^+\pi^-(p,n)$ 0.3 -160 -140 -120 -100 -40 10 -20 0 -BE(MeV) -80 -60

Jan 23/2008 PS review

Multi~1.5

Width (theory)

Waas, Weise, PLB379(96)34

 Γ could be ~ 10 MeV

J. Mare_is, E. Friedman, A. Gal nucl-th/0407063 **Γ ~ 30 MeV**³⁰

Θ^+ : Another explanation

- Yet consistent theoretical models are needed
- KπN bound state
 - arXiv:hep-ex/0312003 (T.K and T.Sato and others)
- Mass ~1540 MeV
 - M(K π N) ~1570 MeV (30 MeV bound)
 - 10 MeV/particle (usual)
- Spin parity ¹/₂+ (original prediction)
 - K π N system (s-wave) ½+
- This conjecture explains all Θ⁺ properties particularly
 - Narrow width
 - Seen in Low Q, unseen in High Q

Θ^+ as a K π N bound state

Known two Body interaction

- $-\pi N$: weakly attractive
- KN: weakly repulsive
- $K\pi$ weakly attractive

TABLE I: Spin, parity and isospin of two particle subsystems.

	$\Theta^+ (K\pi N)$	πN	KN	$K\pi$
$J\pi$	$1/2^{+}$	1/2-	1/2-	0+
I	0	1/2	1	1/2

- $K\pi$ int. may have ambiguity
 - So strong to make $K\pi$ bound state

X (new scaler particle)₃₄

Width of Θ^+ in K πN conjecture

O

s to p wave transition in a interaction length

 $(R(int)/R(\Theta))^{6}$

Radius of Θ^+ (and X)

Asymptotic wave function (π)

$$\phi_{out}(r) = N \frac{1}{r} exp\left(-\frac{\sqrt{2\mu E_B}}{\hbar c}r\right)$$
$$< r^2 > \sim \int r^2 \phi_{out}^2(r) 4\pi r^2 dr = \left(\frac{(\hbar c)^2}{4\mu E_B}\right)$$

E_B=30 MeV 15 MeV r~ 2 fm r~ 3 fm Extended object

Only in low q transfer reaction Width ~ 1 MeV ~300 (1/3)⁶ New hypothetical particle X: Kπ bound state

- Kπ interaction may be strong enough to make a bound state: New particle X
- $0^- + 0^- \rightarrow 0^+$ scaler particle
- Binding energy less than 30 MeV
 - If deeper than 30 MeV $\Theta^{\scriptscriptstyle +}$ decays into N and X
 - Probably a few MeV bound
 - Very extended object

X (Why missed)

- Lowest order decay mode X Kyy
 - No strong decay M_X< M_K + M_{π}
 - No X→K γ decay
 - $(0^+ \rightarrow 0^- + 1^- L \text{ non cons.})$
 - No X→K e⁺e⁻
 - (vec. curr. vs axial charge $(0^+ \rightarrow 0^-)$
- No such decay mode is listed in PDG
- No experimental searches ever made (Probably)
- If it exists.

Jan 23/2008 Hard to believe but possibility is there.

How to measure (KEK-PS-E548)

- p(K⁻⁺, X⁻⁺)p, X! Κ γ γ
 - Measure Kaon momentum in coincidence with γ rays
- BG process: p(K⁻⁺, K ⁻⁺ π⁰), π⁰ ! γ γ
- X particle gives highest P_K
- Measure invariant mass of K and two γ's
 Dedicated detector system
- Study of $K\pi$ final state interaction

Experimental condition (E548)

- K⁺ beam from K2 beam line at KEK-PS
 - $P_{K}=1.2 \text{ GeV/c}$
 - 50k for $3x10^{12}$ ppp
- Target: 20cm thick H₂O and 20 cm thick CH₂
- Trigger
 - (K⁺, K⁺) X Nal(>5 MeV)
 - Rate ~ 500 ev/spill
- KURAMA spectrometer
- Nal
- Data taking ~10 shifts
- Analysis almost done
- Current results are subtle.