E270 (PXN) Y. Wakuta
Measurement of Neutron Production Cross Section

E291 (PXN) K. Ishibashi
Measurement of Neutron Production Cross Section II

E417 (PXN) K. Ishibashi
Neutron Production Cross Section in π Nuclei reactions

E443 (PXN) N. Shigyo
Neutron-Production Differential Cross Sections in the (p,nx) Reaction at Forward Angle

<table>
<thead>
<tr>
<th>E270</th>
<th>Submitted</th>
<th>(1992.2.21)</th>
<th>Approved</th>
<th>1992.3.24</th>
<th>Beam line</th>
<th>π2</th>
<th>Shift requested</th>
<th>100</th>
<th>Shift executed</th>
<th>46</th>
<th>Executed cycles</th>
<th>92[3,6,7,8]</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>E291</th>
<th>Submitted</th>
<th>1993.2.19</th>
<th>Approved</th>
<th>1993.3.19</th>
<th>Beam line</th>
<th>π2</th>
<th>Shift requested</th>
<th>80</th>
<th>Shift executed</th>
<th>83</th>
<th>Executed cycles</th>
<th>93[3,4,5]</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>E417</th>
<th>Submitted</th>
<th></th>
<th>Approved</th>
<th>1997.7.22</th>
<th>Beam line</th>
<th>π2</th>
<th>Shift requested</th>
<th>40</th>
<th>Shift executed</th>
<th>45</th>
<th>Executed cycles</th>
<th>98[2]</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>E443</th>
<th>Submitted</th>
<th></th>
<th>Approved</th>
<th>1999.11.25</th>
<th>Beam line</th>
<th>π2</th>
<th>Shift requested</th>
<th>60</th>
<th>Shift executed</th>
<th>63</th>
<th>Executed cycles</th>
<th>00[5]</th>
</tr>
</thead>
</table>

Papers and activities

[Legend]
● Physics papers published in refereed journal
○ Technical papers
★ PhD theses.
○ Conference and Symposium.
★ Internal Report and others.
Physics papers published in refereed journal.

√ PhD theses
◆ Conference and Symposium
★ Internal Report and others

T. Nakamoto et al.
Spallation Neutron Measurement by the Time-of-Flight Method with a Short Flight Path

K. Ishibashi et al.
Measurement of Neutron-Production Double-Differential Cross Sections for Nuclear Spallation Reaction Induced by 0.8, 1.5 and 3.0 GeV Protons

T. Nakamoto et al.
Experimental Neutron-Production Double-Differential Cross Section for the Nuclear Reaction by 1.5 GeV π⁻ Mesons Incident on Iron

K. Iga et al.
Measurement of Gamma-Ray Production Double-Differential Cross Sections for the Spallation Reaction Induced by 0.8, 1.5 and 3.0 GeV Protons

K. Iga et al.
Measurement of Gamma-Ray Production Double-Differential Cross Sections for 1.5 GeV π⁺ Mesons Incident on Iron

D. Satoh et al.
Neutron-Production Double-Differential Cross Sections of Iron and Lead by 0.8 and 1.5 GeV Protons in the Most-Forward Direction

Y. Iwamoto, et al
Measurement of pion induced neutron-production double-differential cross sections on Fe and Pb at 870 MeV and 2.1 GeV

N. Shigyo, et al.
Measurement of 0.8 and 1.5 GeV Proton Induced Neutron Production Cross Section at 0 degree
Journal Nuclear Science and Technology Supplement, 4, 14-17, July (2004)

T. Nakamoto et al.
Charged particle identification including Pions by pulse-shape discrimination with an NE213 Liquid scintillator

S. Meigo et al.
Measurements of neutron spectra produced from a thick lead target bombarded with 0.5-and 1.5-GeV protons

D. Satoh et al.
Study of neutron detection efficiencies for liquid organic scintillator up to 3 GeV

T. Nakamoto
Experiment on Neutron Production Differential Cross Sections Induced by 0.8, 1.5 and 3.0 GeV Protons
Memoirs of the Faculty of Engineering, Kyusyu Univ., Vol.55, No.4, Dec. 1995

D. Satoh
Measurement of neutron-production double-differential cross sections for high energy proton incidence at most-forward direction
Kyushu University, 2003.

◊ K. Ishibashi et al.
Experiments on (p,xn) Double-Differential Cross Sections or Incident-Protons of Intermediate Energies
Int'l Conference on Nuclear Data for Science and Technology, Trieste, May 19-24, 1997

◊ K. Ishibashi et al.
Neutron Measurement for (p,Xn) Reaction with Protons of GeV Range

◊ K. Ishibashi et al.
Measurement of Neutron-Production Double-Differential Cross Sections for Incident Protons of 0.8, 1.5 and 3 GeV
Int'l Conf. on Nuclear Data for Science and Technology Gatlinburg, Tennessee, May 9-13, 1994

◊ K. Ishibashi et al.
Measurement of Neutron-Production Double-Differential Cross Sections for Incident Protons of 0.8, 1.5 and 3 GeV

◊ T. Nakamoto
Pulse Shape Discrimination Between Protons, Pions and Electrons with NE213 Liquid Scintillator
Proc. 9th WS Radiation Detectors and Their Uses, KEK, Tsukuba, Jan. 17-19, 1995

◊ K. Ishibashi
Measurement of Neutron and Gamma-Ray Production Double Differential Cross Section at KEK

◊ K. Iga
Gamma-Ray Emission Cross Section From Proton-Incident Spallation Reaction
Proc. 1995 Symposium on Nuclear Data, Nov. 16-17, 1995 JAERI, Tokai, Japan

◊ N. Shigyo et al.
Measurement of Neutron-Production Double-Differential Cross Sections for 0.8 and 1.5 GeV Proton Incidence in the Most-Forward directions
International Conference on Nuclear Data for Science and Technology, Tsukuba, October 7-12, 2001.

◊ D. Satoh et al.
Development of SCINFUL-QMD code to calculate the neutron detection efficiencies for liquid organic scintillator up to 3GeV
International Conference on Nuclear Data for Science and Technology, Tsukuba, October 7-12, 2001.

◊ D. Satoh et al.
Neutron Production by 0.8 and 1.5 GeV Protons on Fe and Pb Targets at the Most-Forward Region

◊ N. Shigyo et al.
Measurement of 0.8 and 1.5 GeV Proton Induced Neutron Production Cross Section at 0°

● Physics papers published in refereed journal.
◊ Technical papers.
★ PhD theses.
◊ Conference and Symposium.
* Internal Report and others.