華麗なる終章。そして未来へ

中村健蔵 高エネルギー加速器研究機構 素粒子原子核研究所

KEK 12-GeV 陽子シンクロトロン ーーーその35年の軌跡ーーー 2006年1月13日-14日

1

PS実験第3期の素粒子物理

本格的国際共同研究

■ E246 (今里) 日本・ロシア(INR)・カナダ+ 1992年にKEK-INRのMoU ■実験メンバーの過半数が外国人 K2K ■ K2K-I:日米韓(1995年) ■K2K-II:日米韓伊仏西露・スイス・カナダ・ポーラ ンド(2002年) ■実験メンバーの過半数が外国人 ■ E391a (稲垣) 当初PACからグループの強化の必要性の指摘

■日本・米国(Chicago +)・JINR・韓国・台湾

K 2 K

ニュートリノビームの飛行方向と観測装置の配置

目的: スーパーカミオカンデの発見したニュートリノ 振動を、人工ニュートリノを用いて確認 世界初の長基線ニュートリノ振動実験

2台の電磁ホーン SciFi/Water target SciBar detector Muon chamber 888888888888888 1kt To Super-Kamiokande Water Cherenkov Detector v beam

ra

2222222222222

ターゲットステーションに設置された

7

K2K-I+II	${\sf N}_{\sf sk}^{\sf obs}$	\mathbf{N}_{sk}^{pred}
FC in 22.5kt	112	155.9
1ring	67	99.0
μ-like	58	90.8
e-like	9	8.2
Multi Ring	45	56.8

K2K events observed in Super-Kamiokande as a function of POT (protons delivered onto the target)

Total POT delivered: 1.049x10²⁰ Used for analysis: 0.922x10²⁰

Spectrum/Oscillation Analysis

K. Nakamura January 14, 2006

Allowed Parameter Region

Citation Analysis

SPIRES 5

Hep :: HepNames :: Institutions :: Conferences :: Experiments :: Jobs :: Videos

Modify your search	below.					
FIND CN K2K						
Browse Author	Format:	Standard	<u>Cites</u>	Citesummary	<u>LaTeX</u>	72 Papers

Generated on 01/10/06 (mm/dd/yy) Your result was: 72 [eligible papers = 44 (published or arXiv E-prints)]

Breakdown of search results by citation

		All	Published only
	Renowned papers(500+ cites):	<u>0</u>	<u>0</u>
	Famous papers (250-499 cites) :	<u>1</u>	<u>1</u>
	Very well-known papers (100-249) :	<u>1</u>	1
	Well-known papers (50- 99) :	<u>2</u>	1
	Known papers (10-49) :	11	4
	Less known papers (1-9) :	20	8
	Unknown papers (0) :	9	2
	Total eligible papers analyzed:	44	17
	Total number of citations:	1156	912
	Average citations per paper:	26	54
ura .	I		

K. Nakamura

Current SPI RES Data (Accumulated Citation Number)

CP VIOLATION IN THE RENORMALIZABLE THEORY OF WEAK INTERACTION. By Makoto Kobayashi, Toshihide Maskawa (Kyoto U.),. 1973. Published in Prog.Theor.Phys.49:652-657,1973 TOPCITE = 1000+ Cited 4608 times

REVIEW OF PARTICLE PHYSICS. PARTICLE DATA GROUP. By Particle Data Group (K. Hagiwara et al.). 2002. Published in Phys.Rev.D66:010001,2002 TOPCITE = 1000+ Cited 3258 times

EVI DENCE FOR OSCI LLATI ON OF ATMOSPHERI C NEUTRI NOS. By Super-Kamiokande Collaboration (Y. Fukuda et al.). Published in Phys.Rev.Lett.81:1562-1567,1998 e-Print Archive: hep-ex/9807003 TOPCI TE = 1000+ Cited 2532 times

INDICATIONS OF NEUTRINO OSCILLATION IN A 250 KM LONG BASELINE EXPERIMENT. By K2K Collaboration (M.H. Ahn et al.). Dec 2002. 5pp. Published in Phys.Rev.Lett.90:041801,2003 e-Print Archive: hep-ex/0212007 TOPCITE = 250+ Cited 476 times

OBSERVATION OF LARGE CP VIOLATION IN THE NEUTRAL B MESON SYSTEM. By Belle Collaboration (K. Abe et al.). Published in Phys.Rev.Lett.87:091802,2001 e-Print Archive: hep-ex/0107061 TOPCITE = 250+ Cited 339 times

12 GeV PSからJ-PARCへ

K. Nakamura J. Joint Project between KEK and JAERI

Three unknown parameters

Neutrino oscillations are sensitive to:

2 mass squared differences

- $\Delta m_{21}^2 = m_2^2 m_1^2 = m_{solar}^2$
- $\Delta m_{32}^2 = m_3^2 m_2^2 = m_{atm}^2$
- $(\Delta m_{21}^2 + \Delta m_{32}^2 + \Delta m_{13}^2 = 0)$

Sign(Δm_{31}^2) unknown --- mass hierarchy

- **3** mixing angles: θ_{12} , θ_{23} , θ_{13}
- 1 CP violating phase in the mixing matrix: (δ)

$$V_{MNS} \sim \begin{pmatrix} 0.8 & 0.5 & 0.2 \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \end{pmatrix} \qquad V_{CKM} \sim \begin{pmatrix} 1 & 0.2 & 0.001 \\ 0.2 & 1 & 0.01 \\ 0.001 & 0.01 & 1 \end{pmatrix}$$

Super-Kの発見以後の加速器ニュートリノ振動実験

- 第1世代: Super-Kの結果の検証
 - **K2K**
 - MI NOS
 - OPERA
- 第 2 世代: θ₁₃の測定
 - T2K-I
 - (NovA)
- 第 3 世代: δの測定、mass hierarchyの決定
 - (T2K-II)
 - (T2KK)
 - (NovA with proton driver、 ・ ・)

T 2 K - I

Sensitivity to θ_{13} as a function of δ for normal and inverted mass hierarchies

- 40 GeV
- 10²¹ POT/yr
- 5 years

K. Nakamura January 14, 2006

将来の構想 (T2K-II)

How can T2K measure sign(Δm_{32}^2)?

Spectra measured in Korea are different for degenerate solutions

I shitsuka, Kajita, Minakata, Nunokawa

Sensitivity for 5 detector options - mass hierarchy -

12 GeV PSにおけるK中間子崩壊実験 ■標準模型の検証 + New Physicsの探索 Rare (or forbidden) processes Symmetry violation: CP, T 精密実験 ■ 第1期(TRISTAN以前)、第2期(TRISTAN以 後)にも世界と競う成果。 ■E10(長島) :K⁺ ■E137(稲垣):K₁ µe ■E162(笹尾):K₁ + -e+e-■E195(今里):K⁺ µ⁺ におけるµ⁺偏極の精密測定 ■ 第3期はKEK-PSが世界の中心の一つとなる。

E10 / RPP '88

10000	interacti	ons.					
VALUE (units 10	-6) CL%1	EVTS	DOCUMEN	IT ID	TECN	CHG	COMMENT
< 0.14	90		ASANO	818	CNTR	+	I(π) 116-127 MeV
•• We do no	ot use the	e follo	wing data for	averag	jes, fits,	limits	, etc. • • •
< 0.94	90		47 CABLE	73	CNTR	+	1(π) 60-105 MeV
< 0.56	90		47 CABLE	73	CNTR	+	7(π) 60-127 MeV
<57.0	90	0	48 LJUNG	73	HLBC	+	
	10.5		17	S	CORDIV	10 M	7/-> 447 497

47KLEMS 71 and CABLE 73 assume π spectrum same as K_{e3} decay. Second CABLE 73 limit combines CABLE 73 and KLEMS 71 data for vector interaction.
48 JUNC 73 assumes vector interaction

48LJUNG 73 assumes vector interaction.

E137/ RPP '92

VALUE (units 10-10)	<u>a</u> %	EVTS	DOCUMENT ID	1	TECN	COMMENT
< 0.94	90	0	AKAGI	91	SPEC	
• • We do not	use th	e following d	ata for averages	, fit	s, limits,	, etc. • • •
< 43	90		INAGAKI	89	SPEC	In AKAGI 91
< 2.2	90		MATHIAZHA	.89	SPEC	← BNL E79
< 19	90		SCHAFFNER	89	SPEC	
<110	90		COUSINS	88	SPEC	
< 67	90		GREENLEE	88	SPEC	Repl. by SCHAFFNER 89
< 15.7	90	32	CLARK	71	ASPK	

E162 / RPP '04

ALUE (units 10^{-7})	CL% EVTS	DOCUMENT ID		TECN	COMMENT
3.11±0.19 OUR A	VERAGE	9 1999			
$3.08 \pm 0.09 \pm 0.18$	1125	40 LAI	03 C	NA48	
$3.2 \pm 0.6 \pm 0.4$	37	ADAMS	98	KTEV	
44 + 13 + 05	13	TAKEUCHI	98	SPEC	

E195/ RPP '04

T violation in K^+ $\pi^0 \mu^+ \nu$ measurement of muon transverse polarization

T-odd correlation small final state interactions

 $\begin{array}{ccc} P_T & 0 & \text{T violation} \\ \text{(CPT theorem)} & \text{CP violation} \end{array}$

- P_T (Standard Model) ~ 10⁻⁷
- P_T (Final State Interaction) ~ 10⁻⁶
- P_{T} is a sensitive probe of non-SM CP violation

K. Nakamura January 14, 2006

E246 experiment

North counter hall
K5 stopped K⁺ beam
SC Toroidal Spectrometer
Beam time of 650 shifts

E246 setup and results

• $P_T = -0.0017 \pm 0.0023 \text{ (stat)} \pm 0.0011 \text{ (syst)} (|P_T| < 0.0050 : 90\% C.L.)$ • $\text{Im}\xi = -0.0053 \pm 0.0071 \text{ (stat)} \pm 0.0036 \text{ (syst)} (|\text{Im}\xi| < 0.016 : 90\% C.L.)$

T violation in the J-PARC era

History of $K_{-2} P_{\tau}$

Motivation for J-PARC experiments

- Sensitivity reaches the allowed regions of several new physics models
- *P_T* is sensitive to scalar interactions of the type (flavor off-diagonal) different from EDM and *g*-2, and not measurable at LHC, and tensor interactions

[W.-F. Chang and J.Ng hep-ph/0512334]

- E246 was statistical-error limited
 - No problem at all to improve the error
 - Further suppression of systematic errors is also possible with an upgraded detector
- $P_T (K \gamma \mu \nu)$ can be also measured which is complementary to $P_T(K_{\mu 3})$ with pseudoscalar interactions

[M.Kobayashi et al. Prog.Theo.Phys. 55 (1996)]

 only small experimental area in Phase 1 (60m^Wx 56m^L) with one primary line and a production target

J-PARC experiment

First stage in Phase-1

E246 upgraded detector

- Addition of a new tracking element
- Finer segmentation of target fiber
- Improvement of CsI(Tl) readout
- Active polarimeter
- New magnet for muon field
- Precise alignment

 $\delta P_T \sim 1.2 \times 10^{-4} @10^6/s K^+ \& 10^7 s$

vector correlation

Second stage New detector with larger Acceptance $\delta P_T \sim 4 \times 10^{-5} (K_{\mu3})$ $\delta P_T \sim 7 \times 10^{-5} (K_{\mu\gamma})$ $@ 10^6/s K^+ \& 10^7 s$

K. Nakamura

January 14, 2006

W

Precise measurement of $Br(K_L \rightarrow \pi^0 v \bar{v})$

E391a at KEK-PS and extension at J-PARC

$K_L \rightarrow \pi^0 \nu \nu p \bar{h} y sics$

Ζ

• Flavor Changing Neutral Current

Ζ

• Direct CP violation ($\Delta s = 1$)

- Clean measurement of Im(V_{td})
- Most clear test for the standard model

W

• Clue for the new physics

Method

- Pencil beam
- Detector with complete veto system
 - 4 π coverage with thick calorimeter
 - Wide acceptance
 - Double decay chamber
 - Operation in high vacuum
- High P_T selection
- Step by step approach
 - KEK-PS E391a
 - J-PARC

Detector system

Run Summary of E391a

We established several techniques

Pencil beam, high vacuum, large size calorimeters, calibrations, *etc*

Three runs since 2004

Run-1: Feb.-June 2004, 200 shifts Run-2: Jan.-April 2005, 120 shifts Run-3: Nov.-Dec 2005, 100 shifts

Promising figure is seen in a preliminary analysis using a few % sample.

Expect to improve the present limit by 2-3 orders of magnitude, which is a good stand point for J-PARC experiment.

Final plot using Run-2 one week data

Extension to J-PARC

Phase-2 Hall

- Hall size = 60m (W) x 100 m (L)
- More than 2 target stations
- Test beam facility
 - K. Nakamura January 14, 2006

各時代のPS (素粒子実験の立場から)

- 第1期(1977-1984)
 - PSはKEKの高エネルギーの表看板であったが、世界の注目を浴びることはなかった。
 - しかし、多くの人材を育成し、日本の高エネルギーの発展の基礎を築いた。
- 第2期(1985-1998)
 - 高エネルギーの主力が抜け、PSでは大型実験が可能となった。
 - K中間子崩壊実験がTRISTANの陰で世界に通用する実力を養成した時代。
 - (中高エネルギー核物理の台頭。)
- 第3期(1999-2005)
 - PS/K2KがKEKB/BELLEとともにKEKを代表する2大プロジェクトとして世界を リードした。
 - K中間子崩壊実験は、世界の中心の一つとなった。
 - (核物理はハイパー核、ハドロン物理で世界をリードする成果)
- PS加速器
 - 全期間を通じ、ビーム強度に不満はあったが、安定した運転とビーム供給は特 筆される。ユーザーには使いやすいマシンであった。
- J-PARC
 - PSの成果を受け継ぎ、更に発展を見込む。
 - しかし、当初は忍耐を要するであろう。いかに短時間で軌道に乗せるかが問題。
 - K. Nakamura January 14, 2006