OUTLINE of the K-HALL

K.H. Tanaka for Hadron Beam Subgroup

High Intensity Proton Accelerator Project

Experimental Hall for 50GeV-15 μ A Slow Beam The First (Only One?) KAON FACTORY in the World

OUTLINE of the K-HALL

- General Layout
- Technical Issues
- Schedule
- Budget

- Secondary Beam Lines & Physics
 - Prof. Noumi
- Target & Beam Dump
 - Dr. Sato

Site View of the Project

Tokai Campus of JAERI

K-HALL is the Facility for:

- High Intensity 50GeV · 15 μ A Beam
- Many & Various Experiments
 - 3 Primary Proton Beam Line (A,B,C).
 - 3 Target Stations (T0,T1,T2) in the Line A.
 - T0: Test Beam Lines, Thin (0.5%) Target.
 - T1 & T2: Main Secondary Beam Lines, Thick (30%) Targets.
 - B-Line: For Neutral Kaons and/or Other Special Secondary Line.
 - TX: Target Station for the Immediate Beam Dumping
 - C-Line: For Primary Protons and/or High Momentum meams.
- Future Extension for the Ream Direction

Switchyard and K-Hall (1st Stage)

- One Target station, One Secondary Line.
- 30GeV Operation.
- No Research/Preparation Building.
- Easy Extension to the Beam Direction.

Beam Optics (Slow Extraction)

Outer Line: = 24 mm·mr

Inner Line: = 6 mm·mr

K-HALL (1st Stage)

- Future Extension
 - Second, Third Targets can be placed
- Multi Purpose
 - Neutrals, Primary Beams, High Momentum Beams,
- Stable operation
 - Tight Radiation Shield.
 - Radiation Resistant Beam Line Elements.
 - Facility Design Oriented for the Maintenance.

Beam Profile of JHF-PS(&KEK-PS)

- Beam Energy: 50GeV(12GeV)
- Beam Repetition: 3.4s(2.2 ~ 4s)
- External Beam Width: 0.7s(0.2 ~ 2s)
- Beam Intensity: 3.3x10¹⁴ppp

 $(6 \times 10^{12} \text{ppp: Fast})$

 $(3 \times 10^{12} \text{ppp: Slow})$

Beam Power: 750kW(6kW,3kW)

Beam Profile of JHF-PS(1st Stage)

Beam Energy: 30GeV

• Beam Repetition: 3.4s

• External Beam Width: 0.7s

Beam Intensity: >2x10¹⁴ppp

Beam Power: >270kW

Technical Issue

Problem is:

- JHF (50GeV) PS: More than 100 times Higher Beam Power than KEK (12GeV) PS.
 - More than 100 times Higher Radiation Dose.
 - More than 100 times Larger Heat Deposit.

How to Handle MW-Class Beam.

For the Stable Operation

- Tight/Enormous Radiation Shield.
- Radiation/Heat Resistant Beam Line Elements.
- Facility Design Oriented for the Maintenance.

Radiation/Heat Resistant Beam line Elements

- High Radiation Resistance
- High Heat Resistance

Natural Solution: Remove Organic Materials from the Beam Line.

Rubber, Plastic, Oil, Paint, and Semiconductors, etc. etc.

Heat Up of Beam Dump by 750kW Beam

- Without Water Cooling: Copper melts
- With Water Cooling: Copper Temp. go down to 300

We have to prepare such a tremendous beam dump with water cooling!

2500A Class Mineral Insulation Cable

MI Cable: Completely Inorganic High Power Cable!

Magnet coil winding by 60m-2500A HC-MIC

High-Pot. leak test

Coil winding!

The first coil of 60m-2500A HC-

Magnet with 60m 2500A HC-MIC Coils

Nominal: 3000A/34V

Twater=37 (35Lit./m)

Twater=60 (35Lit./m) Tcoil=74 (Tair=18 @3600A/41V(Max)

Facility Design Oriented for the Maintenance (Maintenance Scenario)

- Remote Maintenance
 - Service Space for Water & Electric power
- Easy Replacement
 - Quick Disconnect from the Service Space

Actual Design: Beam Target Part with Secondary Line.

Mockup for K-HALL

Mock up of the K-HALL 1

Status of September 26th 2002

Mock up of the K-HALL 2

Top View

- Magnet: 8D216MIC
- Outer Size: 1060 x 850 x 800 mm³
- Magnet Gap: 400 x 100 x 800mm³
- Nominal Current Voltage:

3000 A, 33.1 V

- Weight: ~10 ton
- Beam Height: 1200 mm

Front View

Alignment

Limiting Plate Type

Pole Guide Type

Pole Guide Trial!

- K-Hall: PG + LP
- SY: LP

Limiting Plate Trial!

Limiting Plates

Pole Guide

Test results

- LP & PG: Within 10 min.
- PG:
 - We have to see the bottom of the beam line.
 - Pole can be bent by the magnet weight.
- LP:
 - Wall must be necessary
- Next Step
- Remote TV System.
- Automated Lifting Tool for Magnet.

Quick Disconnect Devices

Power, signal: Ready

Vacuum: Radial Seal and/or Pillow Seal

Water: Coupler Type or Swage-Lock Type or

Holding-Arm Type

Alignment: Pole Type and/or Limiting Plate Type

Electric Power

- Max Cur. 3000A
- Max Volt. 200V
- Limited Space
- 30sec for Disconnection
- Good Results
 - Knife Type
 - Plate Type
 - Plug Type

Plug-Type Bridge Connector

Full Power Test

➤ Next Step 1600A-class connector for small magnet

- スプリング

室温

バスバー

Cooling Water Connector

- Regular Pressure: 20 atm.
- Regular Temp. 15-80
- Pure Water
- Size: 2-inches Inner Dia.
- Mineral Seal
- 30s-1min. Disconnect on Hand
- Water Leak: 100ml or less.
- Good Result
 - Holding-Arm Type
- Under Development
 - Coupler Type
 - Swage-Lock Type

Coupler-Type Connector

+ Full Metal Ball Valve for Steam. KITS, Hisaka, etc.

Vacuum Connector

Inner Dia. 20-30cm

Mineral Seal

Vacuum better than 10⁻⁶

Torr.

Remote Operation Time: 10-30min.

Good Results (EP1-K6)

- Pillow Seal
- Mechanical Holding Type

Under Development

- Radial Seal

Radial Seal Conceptual View

Interlock Signals

- Full Mineral Thermal Switch
- Water Pressure Switch
- Signal Cables
 - Ceramic Beads Cable
 - Thin MI Cable
- Signal Connectors
 - Full Ceramic FCI Connector
 - Spring Pin Contact Connector

Full Ceramic FCI Connector

Thermal Switch

Cables

Ceramic Beads

Thin MIC

How to Introduce Electric Power into the Shield without Ohmic Loss?

Problem

- Radiation damage of the Cable insulation
- Tight Radiation Shielding
- Ohmic Loss of the Electric Power
- > MIC Power Line
- Water Cooled Shield Penetrating Bus Duct

oltage Drop @ 2000A

- 4 MICs
 - 0.486V, about 7m
- 10 MFLC Cables
- 0.298V, about 10m

wice Larger Voltage Drop
Almost No Temp. Rise
Hard Wiring Work

Next StepWater Cooled ShieldPenetrating Bus Duct

Water Cooled Shield Penetrating Bus Duct

Switch Yard

• Difficulty: The Roof is not Open.

Slope Part of the Neutrino Beam line

Maintenance Scenario at SY

- Long Tools/Handles through the Shield Block.
- Quick Disconnect for Water, Vacuum and Electric Power
- Automatic Alignment by Limiting Plates

Upper: Crane Lifting Tool

Lower: Pivot Fixture

Switch Yard Top View

- Water, Electric Power:
 Quick Disconnect from the Back of the Shield.
- Vacuum: Radial Seal.
- Magnet Stand: Pivot Fixture
- Alignment: Limiting Plates.
- Automatic Crane Lifting Tool at the Top of the Magnet.

Slope Part of the Neutrino Beam line (Existing)

Image Model of the SY

Status

- Radiation Resistant Parts/System.
 - Almost Ready.
- Heat Resistant Parts/System.
 - Final Stage.
- Remote Handling System/Maintenance Scenario.
 - Ready/Final Stage

Construction Schedule at Tokai

Magnet Installation in SY is Scheduled in 2004+

Magnet Installation in KH is scheduled in 2006-

Construction Budget

2002

2003

2004

2005

2006

```
Civil Eng. + Building
```

• H14:(1億¥: Design)

● H15:11億¥

H16:13億¥

● H17:27億¥

• H18:

Total: 5 1億¥

Problem:

3億¥ for Neutrino Pre-Construction Facility (Including Water)

H14:

• H15:

● H16: 6億¥

● H17: 7億¥

H18:10億¥

Total: 23億¥

Problems: Water Pump 11億¥ Radiation Shield 10億¥

Very Much Limited Construction Budget

- Almost NO New Parts for Primary Beams
 - Recycle from the KEK-PS Resources
 - Second Handed Ones
 - Donation
- Zero (or very small) for Experimental Facility
 - BYO
 - HbY
 - Some Delay?

Magnet Transfer Schedule

Problem: Can K2K be Finished in the summer 2004?

Magnet Collection Project

- The budget situation of the JHF is NOT very good.
- Let us construct the JHF as an international Facility/collaboration!
- Let us Collect USED magnets from all through the world!!!!
 - Magnets for secondary lines
 - Dipoles
 - Gap: 15-20cm
 - Width: 30-40 cm
 - Length: ~1 m
 - $-B: \sim 1 \text{ m}$
 - Spectrometers

- Quadrupoles
 - -Bore: 20 30 cm
 - -Length: ~1 m
 - -B: ~1 Tesla at pole

 Contribution from SLAC, CERN, CEA(Saturne), Tsukuba U, and LANL, BNL......

Magnet Collection Project from Saturne near Paris

- •2 Spectrometer Systems (SPES-I,II)
- •40 Q-Mags, 30cm 0.8-1.6mL, 1T@pole
- •12 D-Mags, 15-20cm Gap, 1-2mL, 2T

SPES-I IS coming to KEK

SPES-I(A23) Magnets

Magnet Collection project from CERN, SLAC, Tsukuba

Antiproton Accumulator Ring from CERN Fixed Target Facility Magnets from SLAC Medical Facility Magnets from Tsukuba U.

Radioactive Iron from DURATEC

- 1\$/10t
- 100\$/1t including transport fee.
- 1/10 of Normal Iron
- Max. 2mR at Surface.
- Less than 2nCi/gr (74Bq/gr)
- Nuclear Wastes?
- Scheduling?
- Possible in Japan'

Design Construction of JHF K-Hall

Hadron Beam-Line Subgroup is Responsible