Analyzing Power A_{n} and $A_{n n}$ in $30-50 \mathrm{GeV}$ Very-High- $\mathrm{P}_{\perp}{ }^{2}$ Proton-Proton Elastic Scattering

M.A. LEONOVA, V.S. MOROZOV, A.D. KRISCH *, V.G. LUPPOV, R.S. RAYMOND, D.W. SIVERS and V.K. WONG
D.G. CRABB
J. R. O'FALLON \# U.S. DEPARTMENT OF ENERGY, USA
Y.S. DERBENEV JEFFERSON LABORATORY, USA
K. YONEHARA FERMILAB, USA
S. J. BRODSKY SLAC, STANFORD, USA
Y. MIYACHI and T.-A. SHIBATA S. ISHIMOTO and H. SATO \#
K. HATANAKA and STUDENTS
Y. SAKEM
G. FIDECARO \# and M. FIDECARO \#
A. I. MYSNIK, A.F. PRUDKOGLYAD, S.M. TROSHIN and M.N. UKHANOV
A.M. KONDRATENKO
W.T.H. VAN OERS TRIUMF, VANCOUVER, CANADA
*SPOKESPERSON, \# RETIRED

UNPOLARIZED BEAM and TARGET

$$
\langle\mathbf{d} \sigma / \mathrm{dt}\rangle \propto\left(\mathbf{N}_{\uparrow \uparrow}+\mathbf{N}_{\uparrow \downarrow}+\mathbf{N}_{\downarrow \uparrow}+\mathbf{N}_{\downarrow \downarrow}\right)
$$

EITHER BEAM or TARGET POLARIZED (ONE-SPIN)

$$
\begin{aligned}
& A_{n B}=\frac{A_{\text {meas }}}{P_{B}}=\frac{\left(N_{\uparrow \uparrow}+N_{\uparrow \downarrow}-N_{\downarrow \uparrow}-N_{\downarrow \downarrow}\right)}{P_{B}\left(N_{\uparrow \uparrow}+N_{\uparrow \downarrow}+N_{\downarrow \uparrow}+N_{\downarrow \downarrow}\right)} \\
& A_{n T}=\frac{A_{\text {meas }}}{P_{T}}=\frac{\left(N_{\uparrow \uparrow}-N_{\uparrow \downarrow}+N_{\downarrow \uparrow}-N_{\downarrow \downarrow}\right)}{P_{T}\left(N_{\uparrow \uparrow}+N_{\uparrow \downarrow}+N_{\downarrow \uparrow}+N_{\downarrow \downarrow}\right)}
\end{aligned}
$$

BOTH BEAM and TARGET POLARIZED (TWO-SPIN)

$$
A_{\text {nn }}=\frac{A_{\text {meas }}}{P_{B} P_{T}}=\frac{\left(N_{\uparrow \uparrow}-N_{\uparrow \downarrow}-N_{\downarrow \uparrow}+N_{\downarrow \downarrow}\right)}{P_{B} P_{T}\left(N_{\uparrow \uparrow}+N_{\uparrow \downarrow}+N_{\downarrow \uparrow}+N_{\downarrow \downarrow}\right)}
$$

$A_{\text {meas }}=$ measured asymmetry
P_{T} and $P_{B}=$ target and beam polarizations
$N_{B T}=$ normalized elastic event rate for (B, T) polarization directions

PAC Question 1: Does Polarized Beam help the A_{n} measurement?

Answer: Yes. One simultaneously measures $A_{n T}$ and $A_{n B}$ which MUST be equal.

- Reduces Run-time by almost 50\%
- Calibrates beam polarization

PROTON-PROTON ELASTIC CROSS-SECTION

UNPOLARIZED do/dt for all $p+p \rightarrow p+p$ data above 3 GeV PLOTTED vs. SCALED $P_{\perp}{ }^{2}$ VARIABLE

NOTE 4 DIFFERENT SLOPES

 FIRST EVIDENCE for STRUCTURE inside PROTON (Akerlof et al. 1966)

PROTON-PROTON ELASTIC An

PERTURBATIVE QCD \Rightarrow
$A_{n}=0$ at HIGH $P_{\perp}{ }^{2}$ and HIGH ENERGY

$$
\begin{gathered}
\mathrm{A}_{\mathrm{n}} \neq 0 \Rightarrow \\
\text { PROBLEM with PQCD? }
\end{gathered}
$$

NO MODEL can EXPLAIN ALL HIGH-P ${ }_{\perp}{ }^{2}$ SPIN EFFECTS ($A_{n} \& A_{n n}$)

GOAL at J-PARC

MEASURE A_{n} \& d σ / dt (\& $A_{n n}$)
up to $P_{\perp}{ }^{2}=12(\mathrm{GeV} / \mathrm{c})^{2}$

Ratio Spin-Parallel: Spin-Antiparallel Proton-Proton Elastic Cross-Sections

MICHIGAN SOLID POLARIZED PROTON TARGET NOW at KEK

- Highly uniform 5 T field
- 0.9 W of cooling power at 1 K
- Target cavity filled with NH_{3}
- 96% proton polarization in NH_{3}
- 85% average over 3-month at AGS

PROPOSED SPIN@J-PARC SPECTROMETER

Q1,Q2,Q3,Q4 are quadrupoles
M1,M2,M3 are dipoles
RH1,RV1,RH2,RV2 for recoil proton angle W1,W2,W3,W4 for recoil proton momentum S1,S2,S3 for recoil proton time-of-flight FV1,FV2 for forward proton angle B123,D123,U123 for beam interaction monitors

MAGNET PARAMETERS

MAGNET	LENGTH (m)	DIAMETER OR GAP (cm)	$\begin{aligned} & \mathrm{B}^{\prime} \text { мах } \\ & (\mathrm{T} / \mathrm{m}) \end{aligned}$	$B_{\text {max }}$ (T)
$\mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}, \mathrm{Q}_{4}$	1.00	20	14.8	
Q_{1} SUPER	0.60	10x16	60.8	
$\mathrm{M}_{1}, \mathrm{M}_{3}$	3.00	20		1.8
M_{2}	1.50	20		1.8

SPIN@U-70 SPECTROMETER

PAC QUESTION 2: What is the Background at Large P_{\perp} ?

Will MEASURE Inelastic \& Quasi-elastic Background in p-p elastic scattering

- as in AGS A_{n} and $A_{n n}$ Experiments at 24 and $28 \mathrm{GeV} / \mathrm{c}$ 1983-1990
- runs with Hydrogen-free Teflon beads replacing H-proton-polarized NH_{3} beads
- simultaneously measures Quasi-elastic and inelastic backgrounds

Combine Experimental Data from U-70 and AGS

SPIN@U70 TEST RUN at $\mathrm{P}_{\perp}{ }^{2} \sim 1.5(\mathrm{GeV} / \mathrm{c})^{2}$

Only $1^{\text {st }}$ Half of Recoil Spectrometer No Forward Hodoscope SIGNAL: BACKGROUND ~80: 1

With Full Recoil Spectrometer and Forward Hodoscope SIGNAL: BACKGROUND Should be Far Better than 80:1 Perhaps 400: 1

Scale measured AGS $P_{\perp}{ }^{2}$ dependence using U-70 data

	$P_{\perp}{ }^{2}(\mathrm{GeV} / \mathrm{c})^{2}$	Teflon correction
AGS	1.5	5%
	7	60%
U-70	1.5	1.2%
J-PARC	$(80: 1) 1.5$	1.2%
	7	15%
J-PARC	$(400: 1) 1.5$	0.24%
	7	3%
	12	$?$

POSSIBLE SPIN@J-PARC PLACEMENT

Or upstream in existing Hadron Hall (See Summary)

PROTON-PROTON ELASTIC CROSS-SECTIONS

PPT THICKNESS:

$\mathrm{T}=\mathrm{N}_{0} \cdot \rho \cdot 3.2 \mathrm{~cm} \cong 210^{23}$ protons cm^{-2}

BEAM INTENSITY:

$I_{B}=10^{11}$ protons $/ \mathrm{s}$

TIME-AVERAGED LUMINOSITY:

$L=I_{B} \cdot T \cong 210^{34} \mathrm{~s}^{-1} \mathrm{~cm}^{-2} \Rightarrow$

SPIN@J-PARC Events/hour

$=\mathrm{Ld} \sigma / \mathrm{dt}\left(\frac{\Delta \mathrm{t} \cdot \Delta \phi \cdot \varepsilon}{2 \pi}\right) 3600 \mathrm{~s} / \mathrm{hr}$
$=6 \cdot(\mathrm{~d} \sigma / \mathrm{dt}[\mathrm{nb}]) \cdot\left(\Delta \mathrm{t}\left[(\mathrm{GeV} / \mathrm{c})^{2}\right] \cdot \Delta \phi[\mathrm{mr}]\right)$

EVENT RATES and ERRORS in A_{n}

$\mathrm{P}_{\perp}{ }^{2}$ $(\mathrm{GeV} / \mathrm{c})^{2}$	$\Delta \mathrm{t}$ $(\mathrm{GeV} / \mathrm{c})^{2}$	$\Delta \phi$ mr	$\mathrm{d} \sigma / \mathrm{dt}$ $\mathrm{nb} /(\mathrm{GeV} / \mathrm{c})^{2}$	EVENTS per hour	HOURS	EVENTS	$\Delta \mathrm{A}_{\mathrm{n}}=[.85 \sqrt{ } \mathrm{~N}]^{-1}$ $(\%)$	
1.0	0.06	159	4000	230000	100	$2.3 \cdot 10^{7}$	0.03	
2.0	0.09	177	90	8600	100	$8.6 \cdot 10^{5}$	0.1	
3.0	0.25	194	19	5500	100	$5.5 \cdot 10^{5}$	0.2	
4.0	0.35	210	4.0	1800	100	$1.8 \cdot 10^{5}$	0.3	
5.0	0.45	225	0.9	550	100	$5.5 \cdot 10^{4}$	0.5	
6.0	0.56	240	0.22	180	200	$3.6 \cdot 10^{4}$	0.6	
7.0	0.67	254	0.055	56	200	$1.1 \cdot 10^{4}$	1.1	Super Q1
8.0	0.79	268	0.016	20	300	$6.0 \cdot 10^{3}$	1.5	$"$
9.0	0.92	282	0.0047	7.3	400	$2.9 \cdot 10^{3}$	2.2	$"$
10.0	1.06	296	0.0017	3.2	600	$1.9 \cdot 10^{3}$	2.7	$"$
12.0	1.25	324	0.0003	0.73	800	$4.4 \cdot 10^{2}$	4.9	$"$

TOTAL HOURS: $3000+500$ (TUNE-UP) with 1011 protons $/ \mathrm{sec}$ ERRORS with POLARIZED BEAM (P_{B}) and POLARIZED TARGET (P_{T})

$$
\Delta A_{n B}=\left(P_{B} \sqrt{ } N\right)^{-1} ; \quad \Delta A_{n T}=\left(P_{T} \sqrt{ } N\right)^{-1} ; \quad \Delta A_{n n}=\left(P_{B} P_{T} \sqrt{ }\right)^{-1} ; \quad \Delta d \sigma / d t=(\sqrt{ } N)^{-1}
$$

PAC Question 1: Does Polarized Beam help the A_{n} measurement?
Answer: Yes. One simultaneously measures $A_{n T}$ and $A_{n B}$ which MUST be equal.

$$
A_{n}=1 / 2\left[A_{n B}+A_{n T}\right] \quad \Delta A_{n}=1 / 2\left[\left(\Delta A_{n B}\right)^{2}+\left(\Delta A_{n T}\right)^{2}\right]^{1 / 2}
$$

- Reduces Run-time by almost $50 \% \Rightarrow 1750+500$ hours
- Calibrates Beam Polarization

PAC QUESTION 3: Why are Spin Effects in Hard p-p Elastic Scattering Important?

 NOTES by SPIN@J-PARC shown in this Blue TypeAnswers by: Profs. Lenisa (pp 14-16), Glashow (16), Brodsky (pp 16-19), Goulianos (20), Sivers (21) \& Salam (22)

Hard polarized scattering

Unpolarized p-p elastic cross section

Dividing $\mathrm{d} \sigma / \mathrm{d}+$ at $90^{\circ} \mathrm{c} . \mathrm{m}$ by 4 made all p-p elastic data fit on a single curve ...

P. LENISA Ferrara University

Medium Energy antiproton-proton Experimenter

scaled p^{2}
Daresbury UK August 2007

Experimental

NOTE by SPIN@J-PARC: Prof. Lenisa wants Ultra-cold Jet (not PPT) for FAIR
-Development of polarized proton beams

- Polarized target

Hard p-p polarized scattering

"The results challenge the prevailing theory that describes the proton's structure and forces" (Krish, 1987)
"One of the unsolved mysteries of hadron physics"(Brodsky, 2005)
"... the thorn in the side of QCD" (Glashow)
It would be very interesting to performe this measurements with polarized antiprotons.

Spin Correlations in Elastic $p-p$ Scattering

CHEP Peking University July 3, 2008

Stan Brodsky SLAC \& IPPP
A. Krisch, Sci. Am. 257 (1987)
"Exclusive

Transversity"

Spin-dependence at large- $\mathrm{P}_{\mathrm{T}}\left(90^{\circ}{ }_{\mathrm{cm}}\right)$: Hard scattering takes place only with spins $\uparrow \uparrow$

Coincidence?: Quenching of Color Transparency

Coincidence?: Charm and Strangeness Thresholds

Stan DruUsky

CHEP Peking University July 3, 2008

K. GOULIANOS Rockefeller University нЕ p-p Experimenter

Diffraction for All High Energy Physics 2006 Chile
from Brodsky's Peking Talk

Unexpected

 spin effects in ppelastic scattering
larger t region can be explored in $p \bar{p}$

Diffraction for all

Sivers Lecture at Riken April 2008
Compilation: Proton-Proton Elastic $\mathrm{Ann}_{\mathrm{nn}}$ at $90_{\mathrm{cm}}^{\circ}(10 \mathrm{MeV}$ to 12 GeV$)$

A. SALAM
 Particle physics today

Annales de l' I.H.P., section A, tome 49, n 3 (1988), p. 369-385 <http://www.numdam .org/item?id=AIH PA_1988_49_3_369_0>

11. THREE TYPES OF IDEAS

We shall divide our remarks into three topics:
A) Ideas which have been tested or will soon be tested with accelerators which are in existence or presently being constructed;
B) Theoretical ideas whose time has not yet come (so far as the availability of accelerators to test them goes), but hopefully the situation may change before the year 2000 AD ; and
C) Passive, non-accelerator experiments which have tested-but not conclusively so far - some of the theories of the 1970's. To give a brief summary, consider each of these three topics in turn.
B) Theoretical ideas whose time has not yet come (from supersymmetry to the Theory of everything); basically because accelerators to test them are not yet commissioned. These ideas include:
vi.) Superstrings. (The axial colour gluons interfering with vector gluons may give the simplest explanation of the spin dependence of scattering of polarised protons as well as of the left-right asymmetry observed by Krisch and collaborators in pp scattering up to 30 GeV .)

A_{n} for PROTON-PROTON ELASTIC SCATTERING at J-PARC

ADDITIONAL PAC QUESTIONS

Quest. 1: What is the beam luminosity and spectrometer performance at J-PARC relative to the AGS/ZGS experiments?
Answer: • Luminosity similar to AGS; ~20 times > ZGS

- Spectrometer's acceptance angle ~20X > AGS/ZGS
- Background much less: far better θ and P resolution in recoil spectrometer. $\sim 5 \mathrm{X}$ better at U-70; probably at least 25X better at J-PARC. (see pp 7 \& 8)
Quest. 2: Why does division by 4 at 90° put all p-p dб/dt data on a universal curve?
Answer: \quad For IDENTICAL particles, the measured $d \sigma / d t$ includes $d \sigma / d t_{\text {F-left }}+d \sigma / d t_{\text {B-right. }}$ Adding d $\sigma / \mathrm{dt}_{\mathrm{F}}+\mathrm{d} \sigma / \mathrm{dt}_{\mathrm{B}} \Rightarrow 2 ; \quad$ Adding amplitudes $\Rightarrow 4$ for some $A_{n} \& A_{n n}$. See: ADK PRL 19, 1149 (1967); R. Serber (1968); V.K. Weisskopf \& H.A. Bethe (1978)
Quest. 3: a.) What are origins of distinct changes in unpolarized dб/dt slope at different $P_{\perp}{ }^{2}$? b.) Are the $P_{\perp}{ }^{2}$ dependences of $d \sigma / d t, A_{n} \& A_{n n} r$ related?

Answer: a.) The change at $P_{\perp}{ }^{2}=3(\mathrm{GeV} / \mathrm{c})^{2}$ may be the start of constituent scattering. b.) do/dt, $A_{n} \& A_{n n}$ all change near $P_{\perp}{ }^{2}$ of 1 and $3(\mathrm{GeV} / \mathrm{c})^{2}$; thus, probably yes.

Quest. 4: What A_{n} and $A_{n n}$ behavior is expected at $P_{\perp^{2}}=7.5(\mathrm{GeV} / \mathrm{c})^{2}$ where d $\sigma / d t$ may change slope?
Answer: This region is totally unexplored. The question may be answered by the SPIN@J-PARC experiment; it could also confirm the slope change in dб/dt.
Quest. 5: Why are the $A_{n}\left[\& A_{n n}\right]$ asymmetries still unsolved mysteries after so many years?
Answer: One does not know why they are unsolved. But SPIN@J-PARC data might answer these mysteries about the fundamental nature of strong interactions and of spin. These mysteries can not be answered by any existing theory.

SUMMARY

Elastic ZGS $A_{n n} \& ~ A G S ~ A_{n}$ experiments \& inclusive π production Fermilab \& new RHIC experiments disagree with all QCD-based calculations during the past 30 years.

Both $A_{n n}$ and A_{n} do not go to zero at high energy or high $P_{\perp}{ }^{2}$ as predicted.

BASIC LAW OF SCIENCE:

If theory disagrees with reproducible experimental data: theory must be modified.
Exploring elastic do/dt, $A_{n n} \& A_{n}$ at high $P_{\perp}{ }^{2}$ could allow J-PARC to provide experimental guidance for required modification of Strong Interactions theory.

These elastic do/dt, $A_{n n} \& A_{n}$ experiments could revitalize elastic spin physics, just as recent RHIC inclusive π production A_{n} experiments revitalized similar Fermilab experiments (E704 Yokosawa et al.).
Elastic $\mathrm{d} \sigma / \mathrm{dt}$ is important since it is the only exclusive process large enough to be measured at TeV energy;
it is dominated by diffraction caused by millions of different inelastic processes.
Many people have forgotten these geometrical ideas.
See: R. Serber, PRL 10, 357 (1963); ADK, PRL 11, 217 (1963); PR 135, B1456 (1964).
$30 \mathrm{GeV} \mathrm{A}_{\mathrm{n}}$ \& d σ / dt experiment to $\mathrm{P}_{\perp}{ }^{2}=9(\mathrm{GeV} / \mathrm{c})^{2}$ could start J-PARC high energy hadron spin physics at small cost. [No 50 GeV ; No polarized beam; PPT at KEK; in existing Hall] High intensity $15-25 \mathrm{GeV}$ т beamline \& PPT could also allow $\pi-p$ elastic A_{n} experiments.

