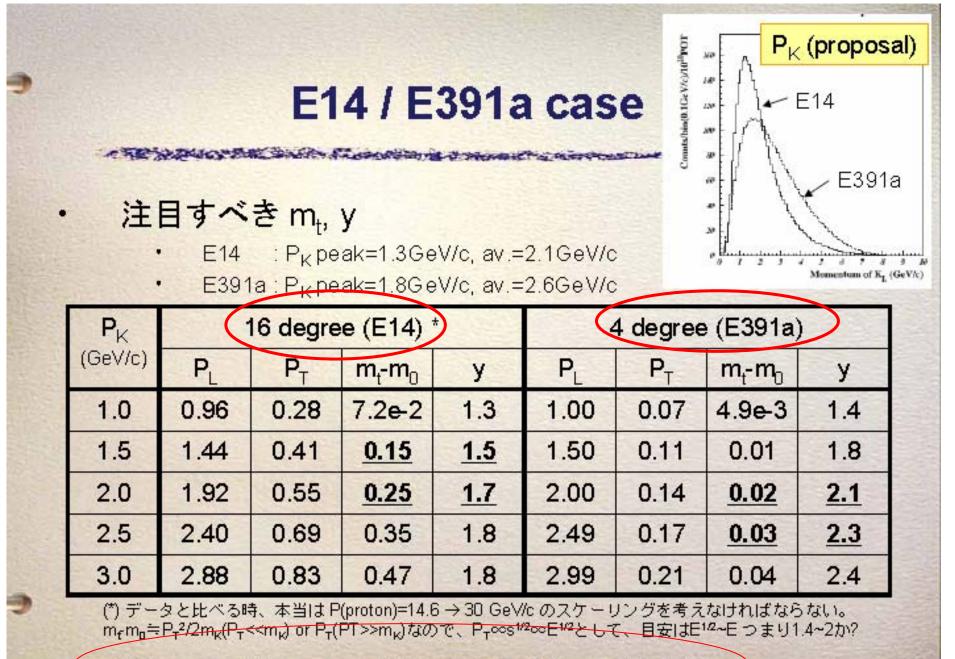
Report from a task force on E14

J. Haba,T. Nakaya, H. Yamamoto, N. Saito, M.Takasaki , M. Tanaka, K. Nishikawa (chair),

- Task force to reply to PAC
 - J. Haba, T. Nakaya, K. Nishikawa, H. Yamamoto, N. Saito, M.Takasaki, M. Tanaka

The PAC considers that it is important for the IPNS/J-PARC management to develop a realistic plan for the completion of the beam lines. This plan should take into consideration the costs, manpower estimates, overall commissioning requirements, radiation safety and other complications associated with the nature of these projects. The PAC requests to hear a report on this plan at the next meeting, with the following guideline:

Guidelines given by PAC


- 1. Timely commissioning of slow extraction to the K1.8(BR) line and fast extraction for the neutrino program should be the highest priority.
- 2. In the completion of the other beamline, the safety aspects especially associated with radiation issues should be seriously considered.
 - Realistic plan of the commissioning accelerator / slow extraction
- 3. In the case that a step-by-step plan is required due to limited resources, the PAC considers the K0 beam line to be second priority, the K1.1BR+K0.8 beam lines for the E06 third priority followed by the high momentum and K1.1 lines as lower priority.
- 4. the upstream magnet installation should be planned carefully due to the safety aspects. Several of the K1.1BR magnets can be installed prior to the K0 beam line components, if this significantly improves the schedule and interference issues

Expected rate with 'best configuration' with a hadron production model (GEANT QGSP)

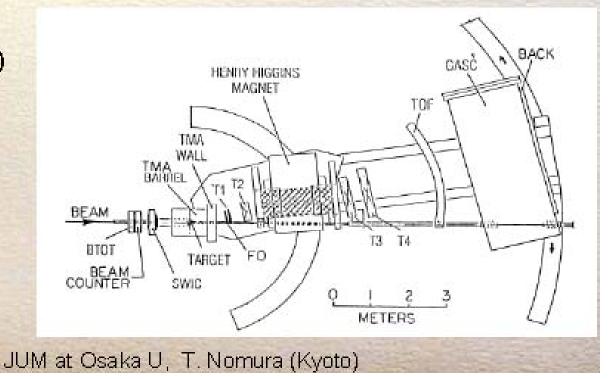
				acceptance loss
		standard cuts	CsI cluster shape cut	(50%)
Signal	$K_L \to \pi^0 \nu \overline{\nu}$	6.0 ± 0.1	5.4 ± 0.1	2.70 ± 0.05
K_L BG	$K_L ightarrow \pi^0 \pi^0$	3.7 ± 0.2	3.3 ± 0.2	1.7 ± 0.1
	$K_L^L \rightarrow \pi^+ \pi^- \pi^0$	0.18 ± 0.08	0.16 ± 0.07	0.08 ± 0.04
	$K_L \to \pi^- e^+ \nu_e$	0.13 ± 0.01	0.03 ± 0.003	0.02 ± 0.001
halo n BG	CV			0.08
	η	8.1	0.6	0.3

- New limit $< 6.7 \times 10^{-8}$ (@90% CL, new publication of E391a)
- $K^+ \rightarrow \pi^+ \nu \nu$: 'Grossman-Nir limit' < 1.4 x 10⁻⁹
- $K^0 \rightarrow \pi^0 e^+ e^-$ (Lepton universarity + 3 generation $\nu < 7.8 \times 10^{-10}$
- 3σ discovery limit is 1.1 x 10⁻¹⁰
 - ~3 orders of magnitudes improvement of current limit
 - But small room for degrading (backgrounds, accidentals,...)

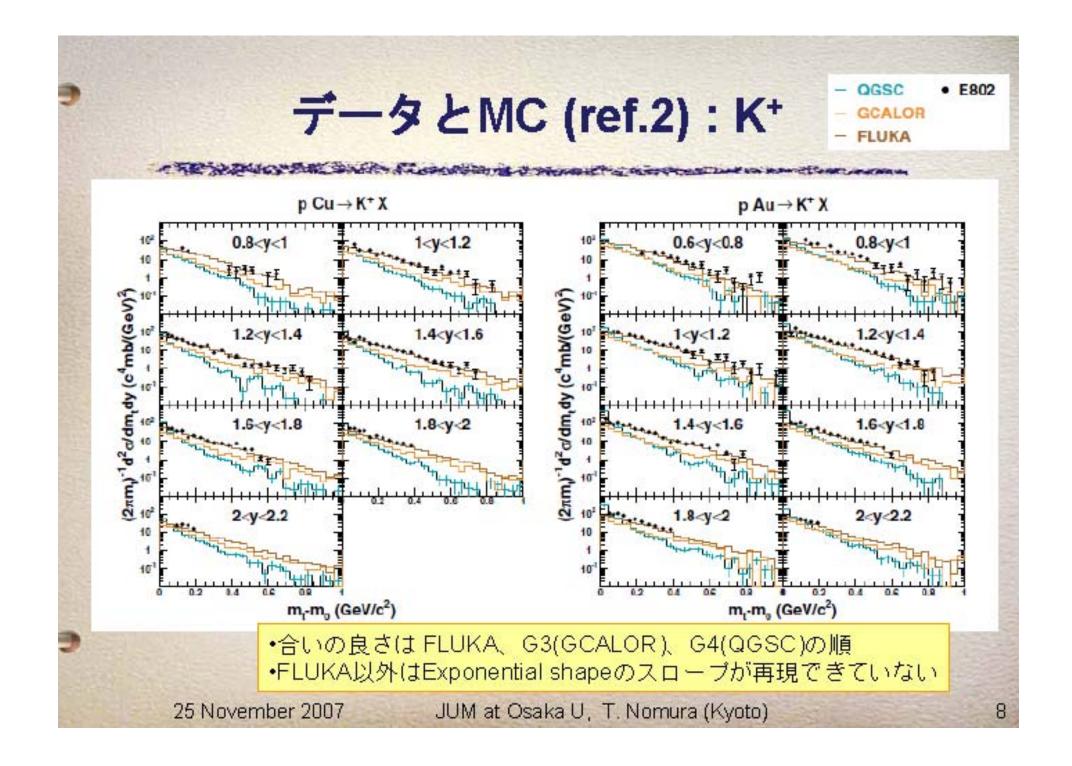
KL yield

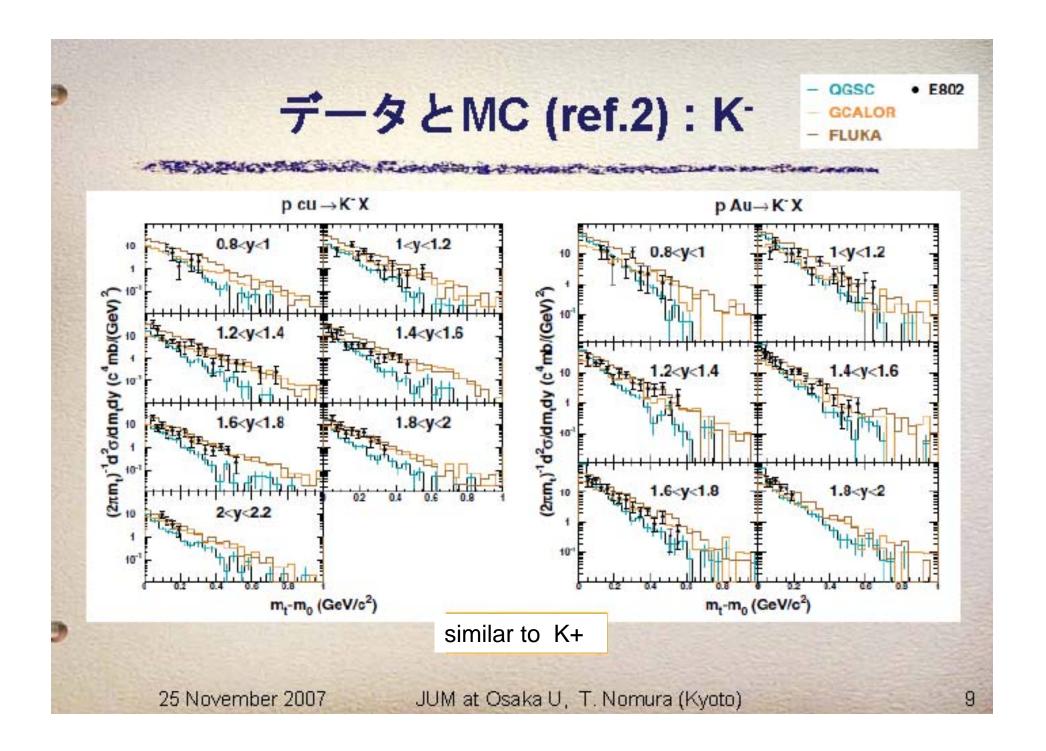
25 November 2007 JUM at Osaka U, T. Nomura (Kyoto)

BNL E802実験 (ref.1)


THE SERVICE STATE STATES A CONSTRUCT OF SHOWER THE DESCRIPTION OF A STATE OF STATES

- Primary momentum = 14.6 GeV/c
- Target = Be, Al, Cu, Au
- Production angle = 5 to 58 degree
 - Spectrometerによる運動量測定


粒子識別 (TOF&ガスチェレンコフ) pion:5GeV/cまで kaon:3.5GeV/cまで proton:8GeV/cまで


٠

25 November 2007

KL yield estimation

E391a

	K_L Yield per POT
Run-II data	$(1.36 \pm 0.08) \times 10^{-7}$
GEANT3	$(1.32 \pm 0.03) \times 10^{-7}$
GEANT4(QGSP)	$(1.31 \pm 0.11) \times 10^{-7}$
GEANT4(QBBC)	$(1.54 \pm 0.12) \times 10^{-7}$
FLUKA	$(1.40 \pm 0.02) \times 10^{-7}$

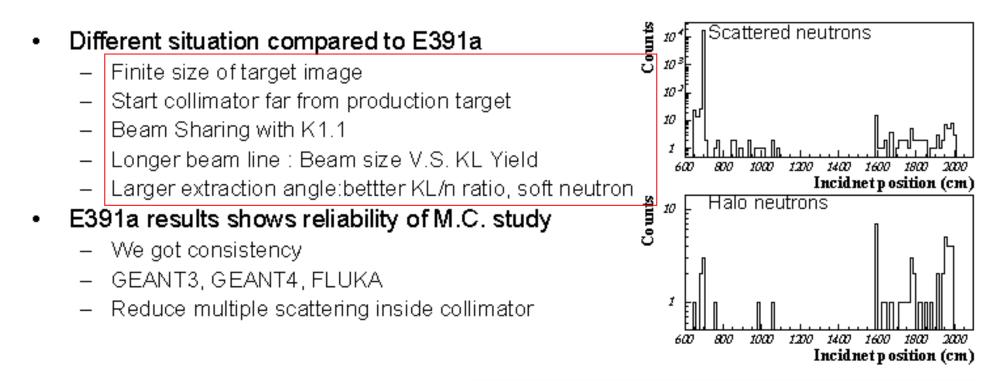
We got good agreement in KL yields among different packages and obtained data at E391a.

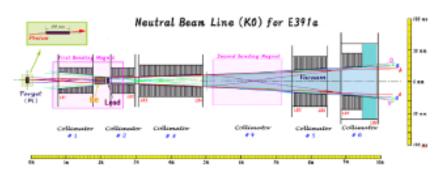
E14

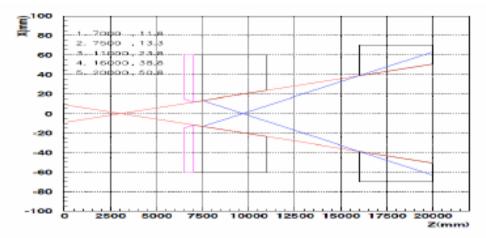
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	In the E14 case, there are discrepancy among packages. We are studying the reason.
--	---

Beam line design and a possible construction scenario

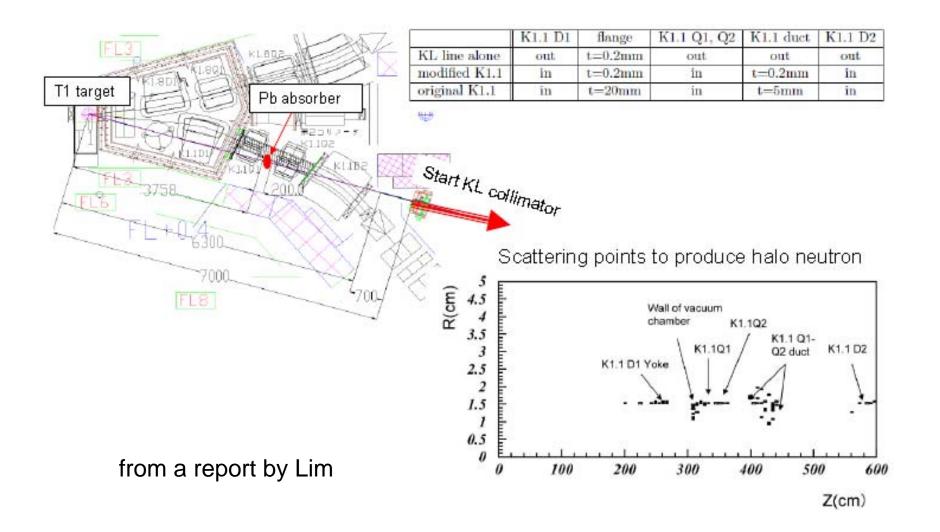
Factors to be considered


Small room for degrading factors to achieve 10^{-10} 3 σ discovery limit


- 1. Accelerator and slow extraction schedule
- 2. Quality of slow extracted beam must be studied
 - Beam stability (spot size and position, spill structure)
 - Beam halo effect on n-BKG
- 3. Effects of upstream materials
- 4. Optimization of the beam line (KL yield vs. n BKG), collimator design (material, acceptance etc.), detector


Power:at	least 20 % of Fig	uares exce	pt RED			F	FY 2	007	(H19	9)					F	FY 2	2008	8 (H2	0)						F	Y 20	009	(H2	1)			
	👗 Target Da	y of Gov.	Inspec.	5	6	7	89	10	11 1	12 1	2	3	4	56	7	8	9	<mark>10</mark> 11	1 12	1	2 3	4	5	6	7	8	9 1	0 1	1 12	1	2 3	
LINAC				•)	•			_		•		-	•	•	-	X	•			•)	•				+		
	Powet	kW					5.	4<0	25>					5.4<	0.6>		5.4	<1.2>	> 6			15	5			<	(18)	>				
	Peak Current	mA					5-	-30														1							-		•	
	Pulse Width	μsec					50	כ						50-2	2 <mark>5</mark> 0	0													-		►	
	Beam Rep.	(25/n)pps	n;Arbitary				(1	0)						(25)					-					▶`	Vai	riabl	e a	cco	rdin	g to	MR-N	Node
RCS							•			X		•		•	•	•		-•	•		X•	•		->		•		-		- +	►	
(MLF)	Power	kW					4		1	20%	10	0%	· · · · ·	4			4		10	0		25	i0			Č	(280					
	Beam Rep.	pps					10)						10 (<mark>2</mark> 5)	•													1			
	Bunch No.						1	+→	2					2			2															
	p's / bunch						4.	2E1	1				1	4.2E	11	•	8.5	E11	4.2	2E12		1.1	1E1:	3		1	.2E	13				
																			(4.	2E1	1)	(4.	2E1	1)								
	p's / ring						8.	3E1	1				1	8.3E	11	0	1.7	E12	8.3	3E12		2.1	1E1:	3		2	2.3E	13				
										Im	npro	ve I	Ext.	Kick	(er				(8.	3 E1	1)	(8.	.3E1	1)	Vai	riabl	e a	cco	rdin	g to	MR-N	Node
MR													•)	•				•		X	•		->)	•						
	Power	kW												0.12	(100	%)			1.2	2		3.6	6			1	00		T	Sta	bilize	
	Energy	GeV											,	3					30			-		->	for	Hig	n In	tens	sity			
	Beam Rep.	pps												0.3-										-▶		C).3–	Max	k. 0.8	5		
	Bunch No.												1	2					2			6				e	}		K	еер	6 Mo	nths
	p's / bunch													4.2E	11				4.2	2E11		4.2	2E1	1		1	.2E	13				
	p's / ring													8.3E	<mark>1</mark> 1				9.,	EII		2.5	5E12	2		7	.2E	13				
Hadron	Beam Rep	1/3.7 pps	or More																•		X	•		-•		•						-
Slow Ext.	Power	kW																	1.2	2		1.2	2			1	.2					
																			←					->		2-B	unc	h&	Wea	ak C	urren	t
	p's / burst																		8.3	BE11		2.5	5E1:	2		1	.2E	13				
Neutrino	Beam Rep. 0.3	pps (Max.0	,5)																					X								->
Fast Ext.	Power	kW																				3.6	6			(00	>				
	p's / burst			1											1							2.5	5E1	2		5	.2E	13	K	eep	6 Mo	nths

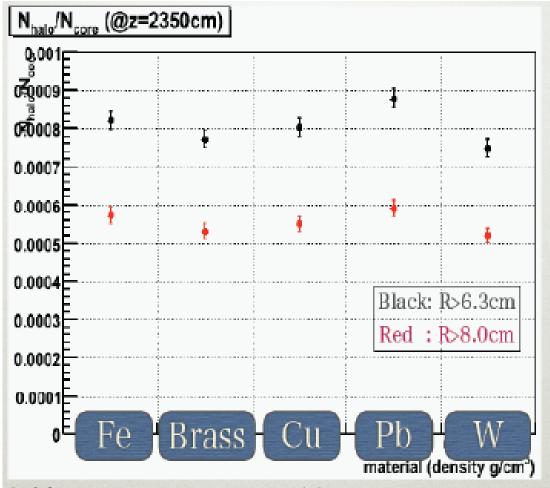
It looks beam studies will be the goal for 2009 and we expect not much radiation in the area


Beam line design from a report by Lim

The effect of upstream materials

Comparison among three different configurations. With and without K1.1 materials

Table 3: Number of the core neutrons, halo neutorns and K_L 's per spill $(2 \times 10^{14} \text{ protons})$ at the three different configurations.

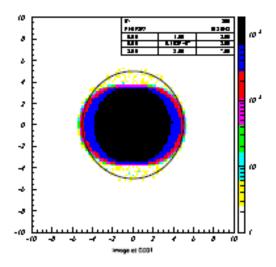

	Core neutron	halo neutron	K_L
	$(E_n > 100 MeV)$	(R > 8cm at CsI Surface,	(At the exit of
		$P_n > 2GeV/c)$	beam line)
KL line alone	3.21×10^{8}	$(0.72 \pm 0.15) \times 10^4$	$(7.79 \pm 0.11) \times 10^{6}$
modified K1.1	$3.15 imes 10^8$	$(1.17 \pm 0.19) \times 10^4$	$(7.77 \pm 0.11) \times 10^{6}$
original K1.1	$1.53 imes 10^8$	$(1.38 \pm 0.20) \times 10^4$	$(4.56 \pm 0.08) \times 10^{6}$

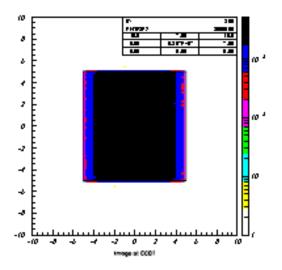
- 'KL line alone' reduces N_halo/N_KL as factor of 3.3 compared to that of 'original K1.1'.
- 'Modified K1.1' recovers N_KL, however the number of halo neutrons is still larger as factor 1.6 compared to that of 'KL line alone'.
 - We need to check feasibility to make large holes (r=2.5cm) in K1.1 magnets.

will depends also on extracted beam condition (position stability, halo etc.)

Collimator Material effect

Must be carefully decided


Halo neutron production weakly depends on material of collimator.


Further study

- Square shaped beam
 - Motivations
 - To adapt target image.
 - To get better KL yield and/or smaller beam size.

- Things to do

- We installed the collimators into GEANT4/GEANT3.
- Quantitative comparison between circular and squared beam. - Promising.
- · Check background level for neutron/KL related.
- We aim to make a decision by the end of 2007.
 - Final design within FY2007.
- Fine tuning of absorber position.
- Fine tuning collimator lines.

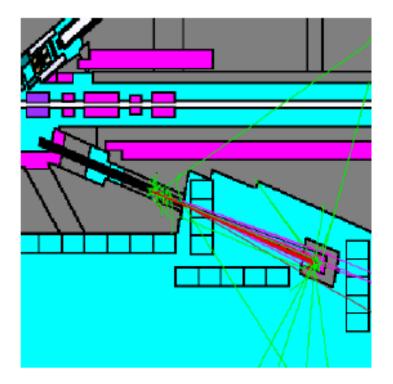
Expected radiation level (µSv/h) 30GeV 1.2kW

lm×lm

280

281

lm


282

51 a 283

284

285

286 287

2007/11/12 鈴木健訓

鉄100cmコンクリート100cm Unit: µSwh Region Doserate Error 48 5.29E+03 5.16E+01 50 7.97E+01 8.57E-01

51 1.28E-01 2.59E-02

We need only beam dump under the 1.2kW condition!

鉄50 cmコンクリート50 cm Unit: µSwh Region Dose rate Error 48 5.32E+03 4.95E+01 50 8.18E+01 9.38E-01

51 1.88E+01 1.48E+00

鉄50 cmコンクリート100 cm									
Unit: µSwh									
Region	D ose rate	Error							
48	5.34E+03	1.35E+01							
50	8.10E+01	2.42E-01							
<u>51</u>	394E+00	1.96E-01							
280	4.63E-01	1.45E-02							
281	3.59E-01	1.15E-02							
282	1.95E-01	8.41E-03							
283	1.40E-01	6.90E-03							
284	5.95E-01	1.45E-02							
285	6.83E-01	1.61E-02							
286	1.83E-01	7.61E-03							
287	7.94E-02	5.41E-03							

- Complete design beam line components in FY2008
- Start survey in late 2009 : estimated by beam channel group
 - 2008 (k¥) total 21,500
 - Beam plug (5,000)
 - Sweeping magnet and power (9,000)
 - Counting hut (7,500)
 - 2009 (total 100,100k¥)
 - Placement of collimators (500)
 - Shields (80,000)
 - Magnet transportation / installation (16,100)
 - Counting hut interior works (2,500)
 - Area preparation (1,000)

Time scale depends on financial situation

Conclusion

- The experiment is worth pursuing as an intermediate step for designing the next.
- Small room of loosing safety factor of sensitivity for the experiment to be a meaningful one
- Given priority set by PAC, the upstream magnet installation for K1.1 should be planned carefully for not degrading E14 performance. Step-by-step of review/construction needed.
 - It seems the radiation problem will be minor to access target area in 2008 and in 2009.
 - Optimizations of beam line should be examined in KL yield, n-BKG, and detector acceptance. We encourage the collaboration to develop a detailed plan of the beam studies to address the issues of KL yield and n-BKG.
 - We also encourage that studies on primary beam by close collaboration with beam channel group
- I feel that everything, down stream of T1 target, should be taken care of by the collaboration