E14 Status

Tadashi Nomura (Kyoto U)

For E14 collaboration

T. Nomura (Kyoto U.) @ 4th J-PARC PAC

E14 experiment (in Phase 1)

- Measurement of K_L→π⁰νν decay with the sensitivity of SM prediction O(10⁻¹¹) using modified KEK-E391a detector
 - To "touch" SM events
 - To discover or exclude physics beyond the SM
 - To understand and control backgrounds down to the level of 10⁻¹¹
 - Step to next phase (in Phase 2) : to design 100-events-observation experiment with dedicated target and new detector

Contents

- KEK E391a Result
- E14 progress
 - Beam-line design
 - Updated signal / background estimation
 - Preparation of CsI calorimeter
- Plan
 - Schedule and funding

KEK E391a experiment

Analysis using Run2 full data (Feb-Mar in 2005)

Accumulate 1.4x10¹⁸ POT, equivalent to ~30 days

E391a analysis method

+ Develop analysis cuts with the signal region being masked.

→ Completely blind manner in this analysis!

Source of Background

Kaon Decay

- $K_L \rightarrow \pi^0 \pi^0$ (2 γ missed; due to inefficiency or fusion)
- $K_L \rightarrow \pi^+ \pi^- \pi^0$ (2 charged pion missed)
- $K_L \rightarrow \pi^- e^+ v$ (charge exchange, annihilation)

Halo neutron

CC02

E391a Run-2 Result

- No events inside the box
- Sensitivity
 - N(K decay)=5.1x10⁹
 - Acceptance=0.67%
 - Geometrical + Efficiency
 + Accidental loss
 - SES = 2.9x10⁻⁸
- BR < 6.7x10⁻⁸ (90%CL)

→ Submitted to PRL (arXiv:0712.4164)

Seminar @ KEK 4-#345 on Jan 16 (Wed)

What we learned from E391a

- Understand BG sources and mechanisms
 - Found effective cuts
 - Find out effective upgrades to reduce BGs
 - Beam line, calorimeter, and "key" veto counters
- Best sensitivity estimation for E14
 - Need 10³ better sensitivity for E14
 - KL yield (x40) x run time (x10)
 - Acceptance improvement
 - Can reduce loss due to "cluster shape cut" with finer CsI
 - Must reduce self-vetoing acceptance loss

E14 progress (1)

Beam-line design

Status of Beam line design

 Design concept has been almost fixed by using GEANT-based simulation

We have (at least) one design to improve halo/core ratio of E391a

Further optimization in progress

Effect of upstream (K1.1) materials

Effect of K1.1 materials

At least, modification of K1.1 materials are needed to retain K_L yield "KL alone" is most preferable

from the view point of halo neutron flux

Table 3: Number of the core neutrons, halo neutorns and K_L 's per spill $(2 \times 10^{14} \text{ protons})$ at the three different configurations.

	Core neutron $(E_n > 100 MeV)$	halo neutron (R > 8cm at CsI Surface, $P_n > 2GeV/c)$	KL (At the exit of beam line)
KL line alone	3.21×10^8	$(0.72 \pm 0.15) \times 10^4$	$(7.79 \pm 0.11) \times 10^{6}$
modified K1.1	$3.15 imes10^8$	$(1.17 \pm 0.19) \times 10^4$	$(7.77 \pm 0.11) \times 10^{6}$
original K1.1	$1.53 imes 10^8$	$(1.38 \pm 0.20) \times 10^4$	$(4.56 \pm 0.08) \times 10^{6}$

KL yield

- Depends on MC package
 G4 / G3 / FLUKA
 - ➔ We use G4 result as a default
 - ← FLUKA may reproduce data according to production experiment (BNL-E802)

E391a

	K_L Yield per POT
Run-II data	$(1.36 \pm 0.08) \times 10^{-7}$
GEANT3	$(1.32 \pm 0.03) \times 10^{-7}$
GEANT4(QGSP)	$(1.31 \pm 0.11) imes 10^{-7}$
GEANT4(QBBC)	$(1.54 \pm 0.12) \times 10^{-7}$
FLUKA	$(1.40 \pm 0.02) \times 10^{-7}$

E14

Further studies

Round beam or Square beam?

- No reason to keep axially symmetric shape in E14
 - □ Common T1 target, with production angle of 16 degree
 → Effective target image is horizontally long
- Reason to consider square-shape:
 - Beam hole of the calorimeter is square (easy to construct)
 - Easier to fabricate long collimator with high accuracy
 - KL yield increases
 - Improve halo/core

Collimator material (heavy metal or Fe?)

Plan of optimization

I. decision of "default setup"

square beam-hole + upstream material (without K1.1)

II. Size of Pb absorber

III.Collimator line

- Front wedge (650~700 cmのsection)
- Trimming line

IV.Position and length of collimator V. To y enhance & for K⁰L B.G.

-> allocate active collimator in end of collimator. (ex.sandwich)

-> allocate W in end of collimator.

VI.Determine collimator design (~08.Mar)

E14 progress (2)

Signal / background estimation updated

Signal / BG update summary

Use KL / halo n yield from beam line simulation

- On the way to full simulation
 - Basically, we used "fast simulation"
 - Model functions for detector response
 - ➔ Partially, we used "full simulation"
 - Shower shape, extra particles in interactions, ...

Again, E391a result

E391a final plot

- Upstream
 "CC02 BG" near the box
- Downstream "CV BG"
- Middle Z, from Low P_T likely "CV-η BG"
- No Kaon BG at this level

Improvement E391a → E14

Better beam line

- Reduce halo neutron/KL ratio
- Larger production angle (16 deg.), softer neutron
- Better reconstruction
 - Main calorimeter with longer and finer CsI crystals

Improved photon vetoes

- Longer CsI crystals for calorimeter
- Thicker Main Barrel
- New Beam Hole Photon Veto (BHPV)
- Newly developed collar counters (NCC: made of CsI crystal)

Charged veto reconfigured

Signal / Background Summary

- 3 snowmass years
- "KL alone" beamline

(KL yield based on GEANT4/QGSP)

				acceptance loss
		standard cuts	CsI cluster shape cut	(50%)
Signal	$K_L \to \pi^0 \nu \overline{\nu}$	6.0 ± 0.1	5.4 ± 0.1	2.70 ± 0.05
K_L BG	$K_L \to \pi^0 \pi^0$	3.7 ± 0.2	3.3 ± 0.2	1.7 ± 0.1
	$K_L \to \pi^+ \pi^- \pi^0$	0.18 ± 0.08	0.16 ± 0.07	0.08 ± 0.04
	$K_L \to \pi^- e^+ \nu_e$	0.13 ± 0.01	0.03 ± 0.003	0.02 ± 0.001
halo n BG	CV			0.08
	η	8.1	0.6	0.3

Note:

Detailed simulation of CV/CC02 BG in progress

 $K_{I} \rightarrow \pi^{0}\pi^{0}$

3 categories

Keys: •Photon veto function •Fusion function

- Even (2γ from $1\pi^0$)
- Odd (2γ from both π^0)
- Fusion (at least 1γ fused with others)

Table 6: $K_L \rightarrow \pi^0 \pi^0$ background with different fusion separation functions after the standard cuts.

	even	odd	fusion	total
KAMI function(default)	2.5 ± 0.1	0.03 ± 0.004	0.25 ± 0.06	2.8 ± 0.1
7×7 -block χ^2	2.5 ± 0.1	0.03 ± 0.004	1.2 ± 0.1	3.7 ± 0.2
RMS	2.5 ± 0.1	0.03 ± 0.004	2 ± 0.2	4.5 ± 0.2

Numbers before "cluster shape cut" and acceptance loss correction Accounting these, 3.7 goes to 1.7 $K\pi 2 \text{ BG: } 1.7$

CV-η BG

Effective cuts

Cf.) Similar method $\chi^2(\theta)$ cut successfully reduce " η background" in E391a

Consistency of angle and shower shape "cluster shape cut" → introduce ANN (Artificial Neural Net)

CC02 BG

Based on G4 MC

- x100 statistics
- Photo-nuclear interaction included
- Reconstruction tail to signal box
 - Shower leakage (from front of Csl)
 - ← Vetoed by MB
 - Photo-nuclear interaction
 - ← "shower shape cut" is effective
- 0.01 event, in case of NCC

Note: ~1 event in case of E391a CC02

Further effort to reduce BG

MB upgrade

- Original : Add layers outside of E391a MB
 - ➔ Add finer sampling layers <u>inside</u> of E391a MB
 - To improve efficiency in low energy
- ← Effective to reduce $K\pi2$ even BG

Optimization of CV

- Position, thickness, or even configuration
- \leftarrow Effective to reduce CV-π⁰ and CV-η BG

E14 progress (3)

Preparation of CsI calorimeter

Preparation of CsI calorimeter

Csl transfer

- Procedure established
- Phase 1 (~120 5cmx5cm blocks) in Feb 2008

Readout R&D

- 125MHz FADC
- Beam test in Dec 2007
- Cockcroft-Walton PMT base
 - □ 1st prototype in Jan 2008

Rehearsal of CsI unstacking

At FNAL-KTeV hall in Dec 2007

And CsI packing

Test of CsI Readout

Beam test at FNAL in Dec 2007

Using M-Test line

- 125MHz FADC
 - 16ch VME moduleFPGA control
- Debugging
- Synchronization with usual DAQ system

Test of CsI Readout

Prompt look at FADC output

Plan

Schedule & funding

Important milestone

Beam survey in autumn 2009

- ← Originally, we planned to do it early 2009, but consulting with beam channel group, we decide to delay it for half an year.
- Not to conflict with K1.8 preparation
- Realistic working schedule
- □ Purpose of the survey is to measure ...
 - beam profile ← to know counting rate
 - KL yield ← to solve the ambiguity in MC packages
 - halo neutron ← to find out requirement to upstream K1.1 materials

Schedule digest

Funding scenario

Funding Scenario 2007-09: 2.29 Oku-yen in total			beamline w/ sweeping magnet full experimental area Unit: 10K yen~\$0.1K				
		sum	2007	2008	2009	2010	2011
	sum	67109	6070	24036	21779	14244	980
	Tokutei	27370	× 5120	10930	6890	3450	980
	US/J	2450	950	1000	500		
	KEK	17060	1	3880	8080	5100	
	DOE	18229	/	7726	5309	5194	
	G.in Aid	2000	/	500	1000	500	
	Csl crystals from Fermilab			Amounts ir	n yellow ar	re allocated	

Summary

E391a finished the analysis of Run2 data

- No serious problem
- BG well understood

E14 steadily making progress in preparation

- Beam-line design, as a first priority
- Signal / background estimation, studied by fast simulation, step to full simulation
- Csl preparation, in progress in this FY

Plan

Important milestone: Beam survey in autumn 2009

End of my talk

Thank you for your attention.