2007 DECEMBER 28

Analyzing Power A_n and A_{nn} in 30-50 GeV Very-High- P_{\perp}^2 Proton-Proton Elastic Scattering

A.W. CHAO, F.Z. KHIARI [§] , A.D. KRISCH *, M.A. LEONOVA, V.G. LUPPOV, V.S. MOROZOV, R.S. RAYMOND, D.W. SIVERS, and V.K. WONG	UNIVERSITY OF MICHIGAN, ANN ARBOR, USA
D.G. CRABB	UNIVERSITY OF VIRGINIA, CHARLOTTESVILLE, USA
J. R. O'FALLON #	U.S. DEPARTMENT OF ENERGY, USA
Y.S. DERBENEV	JEFFERSON LABORATORY, USA
K. YONEHARA	FERMILAB, USA
S. ISHIMOTO	KEK, TSUKUBA, JAPAN
K. HATANAKA and STUDENTS	RCNP, OSAKA, JAPAN
TA. SHIBATA	TOKYO INSTITUTE OF TECHNOLOGY, TOKYO, JAPAN
Y. SAKEMI	TOHOKU UNIVERSITY, JAPAN
G. FIDECARO # and M. FIDECARO #	CERN, SWITZERLAND
A. I. MYSNIK, A.F. PRUDKOGLYAD, S.M. TROSHIN, and M.N. UKHANOV	INSTITUTE FOR HIGH ENERGY PHYSICS, PROTVINO, RUSSIA
A.M. KONDRATENKO	GOO ZARYAD, NOVOSIBIRSK, RUSSIA
W.T.H. VAN OERS	TRIUMF, VANCOUVER, CANADA

* SPOKESPERSON, # RETIRED, § NOT YET CONFIRMED

UNPOLARIZED BEAM and TARGET
$$\left< \frac{d\sigma}{dt} \right> \propto \left(N_{\uparrow\uparrow} + N_{\uparrow\downarrow} + N_{\downarrow\uparrow} + N_{\downarrow\downarrow} \right)$$

EITHER BEAM or TARGET POLARIZED (ONE-SPIN) $A_{n} = \frac{A_{meas}}{P_{T}} = \frac{\left(N_{\uparrow} - N_{\downarrow}\right)}{P_{T}\left(N_{\uparrow} + N_{\downarrow}\right)}$

BOTH BEAM and TARGET POLARIZED (TWO-SPIN)

$$A_{nn} = \frac{A_{meas}}{P_{T}P_{B}} = \frac{\left(N_{\uparrow\uparrow} - N_{\uparrow\downarrow} - N_{\downarrow\uparrow} + N_{\downarrow\downarrow}\right)}{P_{T}P_{B}\left(N_{\uparrow\uparrow} + N_{\uparrow\downarrow} + N_{\downarrow\uparrow} + N_{\downarrow\downarrow}\right)}$$

 $A_{meas} = MEASURED ASYMMETRY$ $P_T and P_B = TARGET and BEAM POLARIZATIONS$ $N_i and N_{ij} = NORMALIZED ELASTIC EVENT RATES$

 $A_n \neq 0 \Longrightarrow$ PROBLEM with PQCD?

NO MODEL can EXPLAIN ALL HIGH-P $_{\perp}^2$ SPIN EFFECTS (A_n & A_{nn})

GOAL MEASURE A_n (and A_{nn}) up to $P_{\perp}^2 = 12$ (GeV/c)²

PROTON-PROTON ELASTIC CROSS-SECTION

UNPOLARIZED d σ /dt for all p + p \rightarrow p + p data above 3 GeV PLOTTED vs. SCALED P₁² VARIABLE

NOTE 4 DIFFERENT SLOPES FIRST EVIDENCE for STRUCTURE inside PROTON (Akerlof *et al.* 1966)

MICHIGAN SOLID POLARIZED PROTON TARGET NOW at KEK

POLARIZING TIME FOR IRRADIATED NH₃

BEAM STABILITY

RELIABLE DATA and NO QUENCHING of SUPERCONDUCTING PPT MAGNET

- ~85% OF BEAM INSIDE 3 mm DIAMETER CIRCLE
 - STABLE INTENSITY, POSITION and SPOT SIZE

BEAM CONTROL SYSTEM

- WEAK UPSTREAM CORRECTOR and POSITION-CONTROL FEEDBACK SYSTEM
 - DOWNSTREAM CORRECTOR to REALIGN BEAM for DOWNSTREAM USERS

SPIRAL BEAM RASTERING

UNIFORM IRRADIATION of TARGET

RUN HORIZONTAL and VERTICAL CORRECTORS ~90° OUT of PHASE

> USED AT SLAC and J-LAB Crabb *et al.*

PROPOSED SPIN@J-PARC SPECTROMETER

ANGLES and MOMENTA of ELASTIC PROTONS and MAGNET STRENGTHS

P_{\perp}^2	θϝ	P _F	θ _R	P _R	∫B·dI ^{EFF} PPT	θ _R ′	∫B·dI ^{EFF} M1	∫B·dI ^{EFF} M2	∫B·dI ^{EFF} M3
(GeV/c) ²	degrees	GeV/c	degrees	GeV/c	T∙m	degrees	T∙m	T∙m	T∙m
1	1.16	49.5	61.2	1.14	0.445	54.7	3.15	-1.58	0.79
2	1.66	48.9	51.9	1.80	0.451	47.7	3.63	-1.81	1.25
3	2.05	48.4	45.8	2.42	0.456	42.7	3.57	-1.76	1.67
4	2.40	47.8	41.3	3.03	0.461	38.9	3.21	-1.57	2.09
5	2.72	47.2	37.8	3.65	0.467	35.8	2.64	-1.29	2.51
6	3.02	46.6	35.0	4.28	0.472	33.2	1.91	-0.94	2.93
7	3.30	45.9	32.6	4.92	-0.478	34.1	2.68	-1.31	3.35
8	3.58	45.3	30.5	5.58	-0.484	31.8	1.70	-0.83	3.78
9	3.86	44.6	28.7	6.26	-0.490	29.8	0.62	-0.30	4.22
10	4.13	43.9	27.0	6.96	-0.496	28.0	-0.57	0.28	4.67
12	4.68	42.4	24.2	8.45	-0.509	25.1	-3.21	1.57	5.59

SPIN@J-PARC DETECTORS

DETECTOR TYPE	LOCATION	SIZE (H X V) [mm]	CH.	RESOLUTION [mm]	THICKNESS [mm]
RV ₁ Scintillator	R-0.8 m	60 x 160	8	10.7 V	10
RV ₂ Scintillator	R-0.8 m	60 x 160	8	10.7 V	10
RH ₁ Scintillator	R-14.2 m	200 x 200	8	13.3 H	10
RH ₂ Scintillator	R-14.2 m	200 x 200	8	13.3 H	10
S ₁ Scintillator	R-14.6 m	200 x 200	4	50 V	10
S ₂ Scintillator	R-34.3 m	305 x 438	4	62.5 V	10
S ₃ Scintillator	R-34.5 m	305 x 438	4	62.5 V	10
W ₁ MWPC	R-15 m	200 x 200	192	1 V	20
W ₂ Drift Chamber	R-22 m	300 x 500	2 x 32	1 V	20
W ₃ Drift Chamber	R-26 m	300 x 500	2 x 32	1 V	20
W ₄ Drift Chamber	R-33 m	300 x 500	2 x 32	1 V	20
FV ₁ Scintillator	F-8 m	15 x 80*	8	1 V	10
FV ₂ Scintillator	F-8 m	15 x 80*	8	1 V	10
U ₁₂₃ Scintillators	F-2 m 20°up	10 x 10	3		32
D ₁₂₃ Scintillators	F-2 m 20°down	10 x 10	3		32
B ₁₂₃ Scintillators	1 m below	12 x 8.5	3		40

SPIN@U-70 SPECTROMETER

FIRST HALF of RECOIL SPECTROMETER ONLY SIGNAL: BACKGROUND ~ 80:1

POSSIBLE SPIN@J-PARC PLACEMENT

2nd POSSIBLE SPIN@J-PARC PLACEMENT

PROTON-PROTON ELASTIC CROSS-SECTIONS

PPT THICKNESS: T = N₀ · ρ · 3.2 cm \cong 2 10²³ protons cm⁻²

BEAM INTENSITY: $I_B = 10^{11}$ protons / s

TIME-AVERAGED LUMINOSITY: $L = I_B \cdot T \cong 2 \ 10^{34} \ s^{-1} \ cm^{-2} \Rightarrow$

SPIN@J-PARC Events/hour

$$= L \left(\frac{d\sigma}{dt} \right) \left(\frac{\Delta t \cdot \Delta \phi \cdot \varepsilon}{2\pi} \right) 3600 \text{ s/hr}$$

= $6(\frac{d\sigma}{dt} \text{ [nb]}) \cdot (\Delta t \text{ [(GeV/c)^2]} \cdot \Delta \phi \text{ [mr]})$

EVENT RATES and ERRORS in An

P⊥² (GeV/c)²	∆t (GeV/c)²	Δφ mr	d o /dt nb/(GeV/c) ²	EVENTS per hour	HOURS	EVENTS	∆A _n = [.8 (%)	5√N]-1
1.0	0.06	159	4000	230000	100	2.3·10 ⁷	0.03	
2.0	0.09	177	90	8600	100	8.6 ⋅10 ⁵	0.1	
3.0	0.25	194	19	5500	100	5.5 ·10 ⁵	0.2	
4.0	0.35	210	4.0	1800	100	1.8⋅10 ⁵	0.3	
5.0	0.45	225	0.9	550	100	5.5 ·10 ⁴	0.5	
6.0	0.56	240	0.22	180	200	3.6·10 ⁴	0.6	
7.0	0.67	254	0.055	56	200	1.1.10 ⁴	1.1	Super Q
8.0	0.79	268	0.016	20	300	6.0·10 ³	1.5	и и
9.0	0.92	282	0.0047	7.3	400	2.9 ⋅10 ³	2.2	Ш
10.0	1.06	296	0.0017	3.2	600	1.9·10 ³	2.7	Ш
12.0	1.25	324	0.0003	0.73	800	4.4·10 ²	4.9	<i>II</i>

TOTAL HOURS: 3000 + 500 (TUNE-UP) WITH 10¹¹ PROTONS/sec

With POLARIZED BEAM (P_B) and POLARIZED TARGET (P_T) $\Delta A_{nB} = (P_B \sqrt{N})^{-1}; \quad \Delta A_{nT} = (P_T \sqrt{N})^{-1}; \quad \Delta A_{nn} = (P_B P_T \sqrt{N})^{-1}; \quad \Delta d\sigma/dt = (\sqrt{N})^{-1}$

STATUS of EQUIPMENT

#	ITEM	STATUS	SUGGESTED ACTION	TIME NEEDED
1.	SOLID PPT, NMR, MICROWAVES	AT KEK	ASSEMBLE AND TEST	6 MONTHS
2.	PPT PUMPS	NEED	ACQUIRE IN JAPAN	6 MONTHS
3.	PPT STAND + HARDWARE	AT KEK	ASSEMBLE AND TEST	3 MONTHS
4.	QUADRUPOLES Q1, Q2, Q3, Q4	J-PARC PROVIDE		2 YEARS
5.	DIPOLES M1, M2, M3	J-PARC PROVIDE		2 YEARS
6.	STANDS FOR: Q1-Q4 & M1-M3	J-PARC PROVIDE		1 YEAR
7.	MAGNETS' POWER SUPPLIES	J-PARC PROVIDE		1 YEAR
8.	SCINTILLATORS: FV ₁ ,FV ₂ ,S ₁ ,S ₂ ,S ₃ RH ₁ ,RV ₁ ,RH ₂ ,RV ₂	SOME AT MICHIGAN	MAKE OTHERS, THEN SHIP	6 MONTHS
9.	WIRE CHAMB: W1,W2 W3, W4	NEED	MAKE AND SHIP	9 MONTHS
10.	DETECTOR STANDS	J-PARC PROVIDE		6 MONTHS
11.	CABLES, CONNECTORS, ENDS	NEED	MAKE AND SHIP	3 MONTHS
12.	ELECTRONICS	MOSTLY AT KEK	ACQUIRE REST, SHIP	3 MONTHS
13.	COMPUTERS	AT MICHIGAN	SHIP	3 MONTHS
14.	MONITORS D ₁₂₃ , U ₁₂₃ , B ₁₂₃	SOME AT MICHIGAN	MAKE OTHERS, THEN SHIP	3 MONTHS
15.	BEAM STABILIZER SYSTEM	J-PARC PROVIDE		1 YEAR
16.	RASTERING SYSTEM	J-PARC PROVIDE		1 YEAR
17.	EXPERIMENT CONTROL ROOM	J-PARC PROVIDE ?		1 YEAR
18.	SHIELDING BLOCKS	J-PARC PROVIDE	PLAN, REARRANGE	1 YEAR
19.	MAGNETS' MOVEMENT PLATES	J-PARC PROVIDE	DESIGN, BUILD AT J-PARC	1 YEAR
20.	LIQUID HELIUM AND NITROGEN	J-PARC PROVIDE	PURCHASE OR LIQUIFY	??
21.	SUPERCONDUCTING Q1	J-PARC OR MICHIGAN	WILL NEED LATER	2 YEARS

ANALYZING POWER for PROTON-PROTON ELASTIC SCATTERING

Ratio Spin-Parallel: Spin-Antiparallel Proton-Proton Elastic Cross-Sections

