P10-2: Exclusive Study on the ΛN Weak Interaction in A=4 Λ-Hypernuclei (update from P10)

S. Ajimura (Osaka Univ.)

Osaka-U, KEK, OsakaEC-U, RIKEN, Seoul-U, JAEA, Torino Spokespersons: A. Sakaguch, S. Ajimura

(Osaka Univ.)

Subjects of this proposal

- Properties of ΛN weak interaction
 - study on non-mesonic weak decay (NMWD) in hypernuclei $\rightarrow \Lambda N$ weak interaction

 - spin/isospin structure
 parity information
 determination of partial decay amplitudes
 - measurement of np-ratio (Γ_n/Γ_p) of ${}^4_\Lambda$ He

 Λn nn, Λp np

- Studies toward test of "∆I=1/2 rule"
 - " $\Delta I = 1/2$ rule" valid or not in NMWD
 - Study on A=4 hypernuclei (${}^{4}_{\Lambda}$ He and ${}^{4}_{\Lambda}$ H)
 - 1st step for the study

Weak decays in Λ -Hypernuclei

Mesonic weak decay (MWD) similar with free Λ decay spin/isospin structure well known

I=0 or 1 Non-Mesonic weak decay (NMWD) new decay modes $\Lambda p \rightarrow np, \Lambda n \rightarrow nn$ spin/isospin structure: unknown

Status of NMWD studies

- Old puzzle solved recently
 - np-ratio $(\Gamma_{\Lambda n \to nn} / \Gamma_{\Lambda p \to pn} \equiv \Gamma_n / \Gamma_p)$ inconsistent $\Gamma_n / \Gamma_p \ge 1 (\text{Exp.}) \iff \Gamma_n / \Gamma_p \approx 0 \text{ (Theory)}$ - Experimental and theoretical improvements

 $\Gamma_n / \Gamma_p \approx 0.5$ (Exp. and Theory)

 – (Exp.) Back-to-back coincidence for final two nucleons (E462/508)

• NMWD of 4-, 5-body hypernuclei

	parity	isospin	amplitude	final	initial
$\int \log \left(T \right)$	no	1	а	¹ S ₀	¹ S ₀
$S_0(I = 1)$	yes	1	b	³ P ₀	
	no	0	С	¹ S ₁	³ S ₁
$\sum_{i=1}^{3} S_{1}(I=0)$	no	0	d	³ D ₁	
	yes	0	е	¹ P ₁	
$- {}^{3}S_{1}(I=1)$	yes	1	f	³ P ₁	
$\sim 1 (1 - 1)$	ial S state	uming init	ass		

Status of amplitude determination

Current status

constraint from ${}^{5}_{\Lambda}$ He data

Our prospects

new constraint from ${}^{4}_{\Lambda}$ He np-ratio better than 15% error

Energy resolution

- K1.8 bemline + SKS \rightarrow excellent resolution
 - Liquid ⁴He 2 g/cm² $\rightarrow \Delta Ex \sim 2 \text{ MeV}$
 - $BE({}^{4}_{\Lambda}He) = 2.42 \pm 0.04 \text{ MeV}$
- Separation from QF Λ production essential

Decay arm system

- Large acceptance and high efficiency for NN

Yield estimation

- 19,000 ${}^4_{\Lambda}$ He/day \rightarrow 500,000 ${}^4_{\Lambda}$ He in 4 weeks
- 1,300 $\Lambda p \rightarrow np$ and 75 $\Lambda n \rightarrow nn$ in 4 weeks

in case of 1% BR Background estimation

- Background sources
 - QF Λ -production ($\Lambda \rightarrow p + \pi^{-}, \pi^{-} + A \rightarrow nnX$)
 - cut in Ex spectrum
 - Mesonic weak decay of hypernuclei
 - ${}^{4}_{\Lambda}\text{He} \rightarrow {}^{3}\text{He} + p + \pi^{-}, \pi^{-} + A \rightarrow nnX$
 - $\Gamma_{\pi^-} \approx 0.3 \ \Gamma \iff \Gamma_n \approx 0.01 \ \Gamma$
- Reduction of background
 - veto: no π track in CDC
 - less material at target
 - LHe target $\leq 2 \text{ g/cm}^2$
 - range(π -) \leq 5 g/cm²

Background MC simulation

- Simulation of worst case
 - 1/5 of π stop in material around target

1/5 Γπ- ~ 0.06 Γn ~ 0.01

– GEANT4 base simulation

Time schedule

– Ready in 2009

- Collaboration with E05 and E15

Summary of proposal

- We propose to measure the nonmesonic weak decay of ⁴_AHe.
 - select initial spin state $({}^{1}S_{0}/{}^{3}S_{1})$
 - first step to check the validity of $\Delta I=1/2$ rule
- 1300 np-decay and 75 nn-decay are expected in 4 weeks if B.R.(nn)=1%.
- Main background, π⁻ absorption, will not affect the measurement
- Experiment will be ready in FY 2009.

Backup Slides

 $\Lambda S=1$ weak interaction Quark description $\Delta S = 1$ W $\Lambda I \neq 0$ • Case of Λ free decay $\therefore \pi = 0 \qquad \Delta S = 1$ I=1 p/s = 0.38S=0 I=1/2 $\Delta I = 1/2 \quad \square \quad \Gamma \pi^{-}/\Gamma \pi^{0} = 2$ or $\Delta I = 3/2 \quad \square \quad \Gamma \pi^{-}/\Gamma \pi^{0} = 0.5$ S= -1 Exp. $\Gamma \pi^{-}/\Gamma \pi^{0} = 1.78$ " $\Delta I = 1/2$ rule" isospin and parity structure well known

$\Lambda N \rightarrow nN$ coincidence necessary

- Back-to-back emission of n+N $\vec{p}_n \approx -\vec{p}_N$
- Sum of n+N kinetic energies

 $T_n + T_N \approx (m_\Lambda - m_N)c^2 \approx 170 \, MeV$

Partial decay amplitudes

- Block and Dalitz treatment
 - Initial S-wave (s-shell hypernuclei)
 - isospin=0 or 1 in final states
 - Represent spin/isospin and parity structure

Expected Spectrum

Asymmetry parameter of ⁵ He

24

Asymmetry parameter of ¹²C, ¹¹B

Yield of ${}^{4}_{\Lambda}$ He with (K-, π -) reaction

Parameters	Values	
K^- beam momentum	0.90 GeV/c	
K^- beam intensity	3.6×10^5 /spill	← full beam (30GeV)
PS acceleration cycle	3.4 sec/spill	
⁴ He target thickness	$2 g/cm^2$	
Reaction cross section	1.5 mb/sr	
Spectrometer solid angle	$0.02 \mathrm{sr}$ \leftarrow	- SPES2
Spectrometer efficiency	0.8	
Analysis efficiency	0.5	

-33,000 ⁴_AHe/day: about ×2 of (π +,K+)

Decay counter Setup

equipment	item	$\cos t (JPY)$	source
Beam spectrometer	MWPC 1mm	4,000,000	Grant-In-Aid
	MWPC encoder	20,000,000	Grant-In-Aid
liquid He target	modification	2,500,000	Grant-In-Aid
	LHe	3,000,000	
		700,000	
T0 detector	scintillator	500,000	Grant-In-Aid
	PMT	2,000,000	Grant-In-Aid
CDC	mechanical support	1,500,000	Grant-In-Aid
	chamber gas	1,000,000	
Range counter system	scintillator	4,000,000	Grant-In-Aid
	WLS-fiber	500,000	Grant-In-Aid
	multi-anode PMT	$3,\!200,\!000$	Grant-In-Aid
	PMT	$1,\!600,\!000$	Grant-In-Aid
	cable	800,000	Grant-In-Aid
	ADC	1,600,000	Grant-In-Aid
	TDC	1,600,000	Grant-In-Aid
	HV supply		Recycle
	discriminator		Recycle
			-
TOF detector	mechanical support	1,500,000	Grant-In-Aid
	scintillator	7,500,000	Grant-In-Aid
	PMT	12,000,000	Grant-In-Aid
	cable	1,800,000	Grant-In-Aid
	ADC	2,000,000	Grant-In-Aid
	TDC	2,000,000	Grant-In-Aid
	HV supply		Recycle
	discriminator		Recycle

High Intensity and High Resolution beamline

High Intensity and High Resolution beamline (new configuration)

Others

Super Kaon Spectrometer (SKS)

Production cross section

- -4_{Λ} He(g.s., 0+) production
- estimation with DWIA by T. Harada

Nn-pair detection efficiency

About ×1.5 in back-to-back region