P08 for J-PARC 50 GeV Proton Synchrotron

Pion double charge exchange on oxygen at J-PARC

A.P.Krutenkova I TEP, Moscow, Russia

E-mail: anna.krutenkova@itep.ru

11-January-2007, J-PARC PAC

Sks Plus Spectrometer Group (J-PARC),

T. Takahashi

High Energy Accelerator Research Organization (KEK), Japan

O.Hashimoto, H.Tamura

Tohoku University, Japan

A.B.Kaidalov, A.P.Krutenkova, V.V.Kulikov,

Institute of Theoretical and Experimental Physics, Moscow, Russia

L.Alvarez-Ruso, M.J.Vicente Vacas

Univ. Valencia, Spain

Proposed Experiment

- Beamline: K 1.8
- Beam energy: $T_0(\pi^-)=1.1$, 1.25, 1.5 GeV; $T_0(\pi^+)=1.1$ GeV
- Beam intensity: 5x10⁶ π/spill Long Flat-Top time operation of 30 (50) GeV PS
- Set-up: K 1.8 Beam spectrometer, SKS+ spectrometer
- Targets and times: H₂O 5g/cm²

¹⁶O(π^{-}, π^{+})X, <3 days,~10K events of forward inclusive DCX **By-product of PO5 experiment**

¹⁸O(π^+, π^-)¹⁸Ne(g.s.), 10 days, ~30events of exclusive DCX First observation at high energies

• Additional equipment: Cherenkov counter(s), ¹⁸O target

Main goal of proposed experiment

Study of new mechanisms of pion propagation within a nucleus using pion double charge exchange reactions as a tool

Pion double charge exchange on nucleus

Exclusive processes

Inclusive processes

 $\pi^{+}+A(Z,N) \rightarrow \pi^{-}+A'(Z+2,N-2) \quad \pi^{+/-}+A(Z,N) \rightarrow \pi^{-/+}+X$

- double isobar analog states (DIAS)
- neutron halo of nuclei
- short range NN correlations
- exotic nuclei
- pion propagation inside nuclei

- nonconventional DCX mechanisms
- inelastic Glauber rescatterings
- dibaryons
- modification of πN amplitude in nucl. medium
- meson exchange currents
- new mechanisms of pion propagation in nuclear media

Conventional mechanism at low energies: two sequential single charge exchanges (SSCX) $\pi^+ + A(Z, N) \rightarrow \pi^0 + A'(Z+1, N-1) \rightarrow \pi^- + A''(Z+2, N-2)$

Short DCX history (low energies)

- 1961 DCX as probe of short-range NN-correlations [A.de Shalit, S.D.Drell, H.Lipkin, «Nucl.News», Weizmann Inst. Sci., Dec.61]
- 1963 First observation of DCX (in nuclear emulsion) [JINR group, Yu.A.Batusov et al, ZhETF 46 (1964) 817] Inclusive reaction $\pi^+A \rightarrow \pi^-X$, $T_0 = 80$ MeV
- 1977 First transition to DIAS: ${}^{18}O(\pi^-, \pi^+){}^{18}Ne$ T₀ = 139 MeV,LAMPF [T.Marks et al, Phys. Rev. Lett. 38 (1977) 149]

High intensity pion beams, spectrometers with <1 MeV energy resolution: LAMPF, TRIUMF, PSI; T₀ < 0.5 GeV Last reviews: H.Clement, Prog. Part. Nucl. Phys. 29 (1992) 175 M.B.Johnson and C.L.Morris, Ann. Rev. Nucl. Part. Sci. 43 (1993) 16

Short DCX history (high energies)

- 1980 Exclusive reaction $\pi^+ + {}^4\text{He} \rightarrow \pi^- + 4p$ Bubble chamber experiments (Nimrod), $T_0 = 1.3 - 1.7$ GeV No DCX events in SSCX kinematics
- 1994 Inclusive reaction $\pi^- A \rightarrow \pi^+ X$ Magnet spectrometer with spark chambers (ITEP PS), $T_0 = 0.6, 0.75$ and 1.1 GeV

Observation of anomalous slow decrease with energy of forward DCX cross section on light nuclei

2002 Inclusive reaction $\pi^{-16}O \rightarrow \pi^+X$ SKS spectrometer with drift chambers (KEK PS), $T_0 = 0.5$ and 0.75 GeV

> Confirmation of slow decrease with energy of forward DCX cross section on ¹⁶O 11-January-2007, J-PARC PAC

Motivation for high energy pion DCX study SSCX

- reasonably describes energy behavior of forward exclusive DCX at incident energies $T_{\pi} \equiv T_0 = 0.3-0.5$ GeV
- predicts <u>rapid drop</u> (with two <u>dips</u>) of pion
 <u>DCX cross section</u> at T₀=0.5-1.3GeV

due to decrease of single charge exchange πN amplitude

[This effect is valid for exclusive and for inclusive DCX]

Unique testing ground for nonconventional mechanisms [D.Strottman (1988), E.Oset, and D.Strottman (1989), M.Arima, and R.Seki (1989) E.Oset, D.Strottman, H.Toki, J.Navarro (1993)] Program in DCX at SKS/KEK: not yet performed [T. Nagae. (1990), O. Hashimoto (1990)]

(a) SSCX mechanism
(b) meson exchange mechanism of Germond and Wilkin
(c) pn absorption mechanism of Jeanneret et al.

ITEP inclusive DCX experiment: $\pi^- + {}^{16}O \rightarrow \pi^+ + X$

■ 10 GeV PS ITEP, ~10⁵ pions/spill

NP A723 (2003) 389

- 3-m spectrometer with spark chambers
- Incident energies: $T_0 = 0.6$, 0.75 and 1.1 GeV; $\theta < 14^\circ$
- Kinematical region: $0 < \Delta T < 140$ (or 80) MeV,

 $\Delta T = T_0 - T$, T is kinetic energy of outgoing pion (additional pion production is kinematically forbidden)

• ΔT scale calibration: $\pi^- + p \rightarrow p + \pi^-$; $\sigma(\Delta T) = 6-8$ MeV

ITEP/KEK T459 experiment: $\pi^- + {}^{16}O \rightarrow \pi^+ + X$ PR C72 (2005) 037602

■ 12 GeV PS KEK, K6 beam (1-2)·10⁶ pions/spill

- Apparatus of $\pi^- \rightarrow K^+$ (E438) experiment:
- ΔT scale calibration: $\pi^- + p \rightarrow K^+ + \Sigma^- \sigma(\Delta T) = 2-3 \text{ MeV}$ [H.Noumi et al. (2002), P.K.Saha et al. (2004)]
- Incident energies:
 T₀ = 0.50 GeV and 0.75 GeV; θ < 15°
- 5-cm long H₂O target

Kinematical region: $0 < \Delta T < 140$ (or 80) MeV <u>Trigger BH1 x BH2 x GC x TOF x LC</u>: $(e^- + \pi^-) + A \rightarrow (e^+ + \pi^+ + p) + X$ Beam e^- suppression : GC Proton background suppression: LC, TOF Positron background study: special run with EAC

ITEP experiment vs KEK experiment

Experimental conditions

	ITEP	KEK	
PS	10 GeV	12 GeV	
T ₀ , GeV	0.59, 0.75, 1.10	0.50, 0.75	
Beam intensity	~10 ⁵ π⁻/spill	~10 ⁶ π ⁻ /spill	
θ, degrees	2-14	4-15	
ΔT resolution	6-8 MeV	2-3 MeV	
ΔT calibration	$\pi^- + p \rightarrow p + \pi^-$	$\pi^- + p \rightarrow K^+ + \Sigma^-$	
main detectors	spark chambers	drift chambers	
targets	H_2O, D_2O	H ₂ O	
e⁺ background	suppression with č	special run	

ITEP experiment vs ITEP/KEK experiment

Backgrounds

Signal + background: $(e^- + \pi^-) + A \rightarrow (e^+ + \pi^+ + p, d) + X$

<u>Sources of positrons (main background):</u>

beam electrons: $e^- \rightarrow \gamma \rightarrow e^+$ in target single charge exchange of beam pions: $\pi^- \rightarrow \pi^0 \rightarrow e^+$ in target

- p, d : <u>suppression</u> with TOF in both experiments
- e^- : <u>suppression</u> with Čerenkov counter + cut θ > 2° (ITEP) <u>suppression</u> with cut GC and θ > 4° (KEK)
- e⁺: <u>suppression</u> with Čerenkov counter (ITEP) cross section <u>correction</u> for e⁺ background (KEK)

Positron background study (KEK): special run with additional aerogel Čerenkov counter

π^+ energy spectra in reaction $\pi^- + {}^{16}O \rightarrow \pi^+ + X$

Spectra are integrated over 0 < $\Delta T = T_0 - T < 140$ or 80 MeV

5

SSCX mechanism (solid curve),

 $\pi^{-16}O \rightarrow \pi^+ \pi^-X$ (dotted curve)

> [M.J.Vicente Vacas, L.Alvarez-Ruso (2003)]

T_=0.59 GeV

14

Integrated cross sections, $\mu b/sr$

$\langle d\sigma/d\Omega \rangle_{140(80)} = \int_{0}^{140(80)} (d^2\sigma/d\Omega dT) d\Delta T$

T ₀ , GeV	0.50	0.59	0.75	1.1
/ <u>dσ\</u> ITEP		18.8±2.8	11.1±2.1	7.3±1.8
\dΩ/ ₈₀	15.9±3.2		14.1±1.4	
/ <u>dσ\</u> ITEP		80.2±9.1	42.6±5.9	28.6±4.8
$d\Omega/_{140}$ KEK	96.2±17.6		56.1±5.4	

Statistical error: due to $N_{140(80)}$ (both exp.), ΔB (KEK)

Systematic error: ~10% due to ΔT scale, mainly (both exp.) (Not shown in the table)

Energy dependence of inclusive DCX cross section

[IR^{11-January-2007, BPARC PAC, and A.P.Krutenkova, 2001]}

Energy dependence of inclusive DCX

$$\langle \mathbf{d}\sigma/\mathbf{d}\Omega \rangle_{140(80)} = \langle \mathbf{d}\sigma/\mathbf{d}\Omega \rangle_{140(80)}(\pi^0) + \langle \mathbf{d}\sigma/\mathbf{d}\Omega \rangle_{140(80)}(\pi\pi)$$
SSCX mechanism with real π^0 New mechanism with two pions (inelastic Glauber rescatterings, IR)

For IR theoretical curves:

Upper limit: OPE model + experimental $\sigma(\pi \rightarrow 2\pi)$ Lower limit: OPE model <u>Current status of high energy DCX study</u>

- Cross section of forward inclusive DCX reaction $\pi^- + {}^{16}O \rightarrow \pi^+ + X$ was measured: $T_0 = 0.5, 0.59, 0.75$ and 1.1 GeV (ITEP + ITEP/KEK)
- Inclusive $\sigma(DCX)$ does NOT drop rapidly at $T_0 > 0.6$ GeV

- At $T_0 > 0.6$ GeV SSCX mechanism with real π^0 (elastic Glauber rescattering) does not dominate
- New mechanism with two pions in intermediate states (inelastic Glauber rescatterings: IR) seems to be a good candidate

Gribov formalism for pion nucleus scattering

Gribov statements in framework of relativistic Quantum Field Theory

- Two "main" diagrams correspond to $\sigma_1 + \sigma_2$ in Glauber formula while "elastic" diagram gives Glauber screening (Glauber elastic rescattering)
- For higher energies, "inelastic" diagram with H = multipion state (Glauber inelastic rescattering) is substantial; thus Gribov obtains relativistic Glauber-type formula :

 $\sigma_{d} = 2\sigma_{N} - 2\int dk^{2} \rho(4k^{2}) (d\sigma_{N}/dk^{2})$

where k^2 is 3-momentum transfer to nucleon, squared, $\rho(4k^2)$ is charge form factor of deuteron, $d\sigma_N/dk^2$ is sum over all possible πN interactions (elastic and inelastic)

For arbitrary nucleus, $d\sigma_N/dk^2$ is proportional to sum of total cross sections, squared:

 $d\sigma_N/d\Omega \propto \Sigma \iint dt dM^2 (d\sigma_{\pi \to H}/dt dM^2)^2$

where t and M^2 are correspondingly invariant momentum transfer in both vertices and mass squared of intermediate state $H = 2\pi$ in "inelastic" diagram

Experimental data from V.Flaminio (compilation), 1983

Importance of IR study

Both proposed reactions imply start in first-hand study of inelastic Glauber rescatterings (IR).

- IR as relativistic QFT effects are now important in heavy ion collider physics (RHIC).
- Up to now IR are appeared only as per cent contribution to usual hadron-nucleus cross sections.
- Elastic rescattering gives 15-20% effect.
- IR are totally absent in cascade models.

DCX is <u>unique process</u> where inelastic rescatterings seem to be main new mechanism at high energies [Kaidalov and Krutenkova, Phys. Atom. Nucl., 1997; J.Phys.G, 2001]

Experimental Method

- π⁻ beams @ K1.8 beamline
 1.25-1.65 GeV/c
- π⁺ measured by SksPlus or SksMinus
 1-1.6 GeV/c
 - Inclusive: SksPlus(E05) or SksMinus(E13)
 - Exclusive: SksPlus due to high resolution

SksPlus for E05

11-January-2007, J-PARC PAC

SksMinus for E13

Expected yield

 $N_{DCX} = N_{beam} \times N_{target} \times (d\sigma/d\Omega) \times \Delta\Omega \times f$

Reaction ¹⁶**O**(π^{-}, π^{+})**X**

N(T₀=1.1GeV)=13.2x10¹⁰x(5x6.02/18)x10²³x 29x10⁻³⁰x30x10⁻³x0.3=5.8K events/day

N(T₀=1.5GeV)=13.2x10¹⁰x(5x6.02/18)x10²³x 19.3x10⁻³⁰x30x10⁻³x0.3=3.1K events/day

Reaction ¹⁸O(π^+, π^-)Ne(g.s.)

N(T₀=1.1GeV)=13.2x10¹⁰x(5x6.02/20)x10²³x 0.02x10⁻³⁰x30x10⁻³x0.3=3.6 events/day

Expected yield-2

 $N_{DCX} = N_{beam} \times N_{target} \times (d\sigma/d\Omega) \times \Delta\Omega \times f$

N_{beam}=5x10⁶/spill (13.2x10¹⁰ /day)

Target length: 5g/cm² H₂O (¹⁶O and ¹⁸O) total momentum resolution: ~4MeV FWHM Beam: 0.6 MeV, SKS+: 2.5 MeV, target: 2.5 MeV

 $(d\sigma/d\Omega)=29\mu b/sr (19.3\mu b/sr) for 1.1GeV (1.5GeV) (d\sigma/d\Omega)=0.02\mu b/sr for 1.1 GeV (exclusive)$

Angular acceptance: 30 msr

Total efficiency: f=0.3

Summary

We propose to explore the dip region in energy dependence of pion double charge exchange reactions that is the unique testing ground for <u>nonconventional mechanisms</u>:

AS A PILOT STEP for inclusive reaction ¹⁶O(p⁻, p⁺)X

at $T_0=1.1$ GeV for reference,

1.5 GeV in the dip and

1.25 GeV between them, 3 days in total,

meaning that it is unique process where inelastic rescatterings dominate at GeV energies;

Possible update of Proposal for DCX

- Study of inclusive DCX at energies 2-4 GeV Starting from 2 GeV, OPE model predictions are reliable
- A dependence from Li to Bi at 1.1 and 1.5 GeV 5 nuclei as a minimum; high statistics is not important
- Exclusive DCX ${}^{14}C(\pi^+,\pi^-){}^{14}O$ at 1.1 or 1.3 GeV Predictions are similar to those for reaction on ${}^{18}O$ to be discussed with theoreticians