High-resolution Search for Θ^+ Pentaquark in $\pi^-p\rightarrow K^-X$ Reaction

M. Naruki, RIKEN
Collaboration

RIKEN M. Naruki
KEK S. Ishimoto, T. Maruta, Y. Sato, S. Sawada and M. Sekimoto
Kyoto Univ. S. Dairaku, H. Fujimura, K. Imai, K. Miwa, Y. Nakatsugawa, N. Saito and K. Tanida
Osaka Univ. S. Ajimura
RCNP M. Niiyama
Tohoku Univ. H. Tamura
Univ. of Tokyo H. Fujioka, D. Nakajima and T.N. Takahashi
Proposed Exp. – Abstract –

• natural expansion of E522 ($\pi p \rightarrow KX@K2$)
• ~ 5 times better resolution: ~ 2.5 MeV FWHM with SKS
 – 10 times better S/N
• 100 times larger yield: $1.2 \times 10^4 \Theta^+$ with 20 shifts

• expected sensitivity (lab) 75 nb/sr $\Gamma < 2$ MeV $\rightarrow \sigma_{tot} \sim 112$ nb
 150 nb/sr $\Gamma = 10$ MeV
• momentum dependence of cross section: $p_\pi = (1.87, 1.92, 1.97 \text{GeV/c})$

- Goal -
 confirm Θ^+ existence with high statistics
The Θ^+ baryon

Theoretical prediction
- Diakonov et al. ('97)
 - Chiral soliton model
 - Anti-decuplet
 - $M=1530$ MeV, $\Gamma<15$ MeV
- Irreducible 5 quark(uudds) state

Experiment
- LEPS at Spring-8 ('03)
 - $\gamma n \rightarrow K^{-}\Theta^+ \rightarrow K^-K^+n$
 - $M=1540\pm10$ MeV
 - $\Gamma<25$ MeV
Controversial status

- Experiments with positive evidence
 - Better statistics is needed (significance $\sim 5\sigma$)
- Experiments with negative results
 - High statistics

Positive results
- BABAR
- SPHINX
- HyperCP
- CLAS-D
- CDF
- BES
- HERA-B
- BELLE

Negative results
- High statistics experiment with hadronic reaction at low energy region
- JLab-p
- HERMES
- p+C
- SVD/IHEP
- CDF
- ZEUS
- ITEP
- SPHINX
- COSY-TOF

JLab-d $pp \rightarrow \Sigma^+\Theta^-$.

High statistics experiment - hadronic reaction at low energy
Θ⁺ search via hadronic reaction

• multiquark system: to test the QCD in non perturbative regime.
 – how tightly are they bound?
 – qqqqq → qqq + qq: wide width?
• the narrow width (< 1 MeV) is remarkable characteristic.
 – What is the reason of this suppression?
 – ex. diquark model by Jaffe & Wilczek
 • -- exchange of quark combination
 • -- excitation of orbital angular momentum
 – effective forces between quarks

• To show the narrow pentaquark really exist (or not).
• We search for Θ⁺ via hadronic reaction \(\pi^- p \rightarrow K^- \Theta^+ \)
 – high statistics
 – less ambiguity
s-channel via N*

- CLAS observed Θ^+ in $\gamma p \rightarrow \pi^+ K^- K^+ n$ reaction.
- if s-channel is dominant, Θ^+ production is reduced at higher energies.

→ this process possibly exists in $\pi p \rightarrow n \rightarrow K^- \Theta^+$ reaction!

$\gamma p \rightarrow \pi^+ K^- K^+ (n)$

7.8σ
E522 experiment @ KEK-PS K2

- Θ^+ search via $\pi^- p \rightarrow K^- X$ reaction
- beam momentum: 1.87, 1.92 GeV/c
- target: Polyethylene
- intensity: $3.3 \times 10^5 \pi^- /\text{spill}$
- net beam time: 32 hours for each momentum $\rightarrow \sim 7 \times 10^9 \pi^-$

A bump was observed at $M = 1530.8\,\text{MeV/c}^2$
- at $p_\pi = 1.92\,\text{GeV/c}$
- $\text{S/N} = 2.5\sigma$
- upper limit: $\sigma_{\text{tot}} = 3.9\mu\text{b}$

$p_\pi = 1.92\,\text{GeV/c}$

$\frac{d\sigma}{d\Omega} = 1.9\,\mu\text{b/sr}$
$\rightarrow \sigma_{\text{tot}} = 2.9\,\mu\text{b}$
Experimental Method

K1.8 beam line + SKS

2GeV/c $\pi^- + p \rightarrow K^- + \Theta^+$

target : liquid H$_2$, reuse E559’s

K$^-$: scattered angle $\leq 40^\circ$
momentum up to 0.9 GeV/c

SKS: momentum coverage: 0.7-0.95GeV/c
angle coverage $\leq 20^\circ$

$p_{\text{scattered}}$ up to ~ 1.1 GeV/c
dp/p $\sim 0.2\%$ @ 1GeV/c
(~ 10 times better than KURAMA)
ideal for Θ^+ detection
acceptable beam intensity is limited to rate capability of the beam line chamber

- tracking chambers @PS K6 : 5mm pitch
 - stands up to
 \[4 \times 10^6 \times 1.1 \text{(protons)} / 1.8 \text{sec} = 5 \times 10^6 \pi^- / \text{sec}\]
- new tracking chambers; 1mm pitch MWPC
 - \[5 \times 10^6 / \text{sec} \times 5 / 1 \text{ mm} = 1.3 \times 10^7 / \text{sec}\]
 \[\rightarrow 1.0 \times 10^7 / \text{spill w/ 0.7 sec flat top}\]
 \[\rightarrow 1.5 \times 10^7 / \text{spill w/ 1.4 sec flat top}\]

required number of protons : \[4 \times 10^{12} \text{ pps}\]
\[\sim 1/50 \text{ of DAY-I intensity}\]
Missing Mass Resolution

\[\Delta M = 1.8 \text{ MeV (FWHM sim.)} \]

\[\sigma = 0.26^\circ \]

\[\frac{d \rho}{\rho} / \rho = 0.096 \times \% + 0.092\% \]

\[\frac{d \rho_{\text{beam}}}{\rho_{\text{beam}}} = 1.4 \times 10^{-4} @ 1 \text{ GeV/c} \]

\[\Rightarrow \Delta M = 2.5 \text{ MeV (FWHM calc.)} \]
Missing mass simulation

1.9µb/sr

main contributions come from;

\[\phi : \phi n \rightarrow K^+K^-n \rightarrow 30.0\pm8.0 \mu b \]

\[\Lambda : \Lambda(1520)K^0 \rightarrow K^-K^0\pi \rightarrow 20.8\pm5.0 \mu b \]

phase space : K^-KN \rightarrow 26 \mu b

significance : 62\sigma

assuming \Gamma < 2MeV

\sigma = 1.9\mu b
Expected Yield & Sensitivity

• yield
 – beam pions: 160 hours beam time $\rightarrow 4.8 \times 10^{11} \pi$ for each p_π
 – SKS acceptance: 0.1 sr
 – analysis efficiency: 50%
 – K decay: 50% \leftarrow TOF 4.7m
 – 1.9μb/sr @ $p_\pi=1.92$GeV/c \leftarrow E522
 $\rightarrow 1.2 \times 10^4$ events

• background
 – 0.8μb/sr/MeV @ 1.530MeV for proton target \leftarrow E522
 – momentum flat
 $\rightarrow 5.0 \times 10^3$ counts/MeV

<table>
<thead>
<tr>
<th>statistics</th>
<th>sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$62\sigma \quad \Gamma < 2$ MeV</td>
<td>75nb/sr $\quad \Gamma < 2$ MeV</td>
</tr>
<tr>
<td>$48\sigma \quad \Gamma = 10$ MeV</td>
<td>150nb/sr $\quad \Gamma = 10$ MeV</td>
</tr>
</tbody>
</table>
Summary

- J-PARC K1.8 beam line + SKS is ideal for Θ^+ production
 - at low energy
 - in hadronic reaction \rightarrow high statistics
 - with high mass resolution

- If exist;
 - confirm Θ^+ existence with high-statistics.
 - production mechanism: $\pi^- p \rightarrow K^- \Theta^+$