(P17) Precision spectroscopy of Kaonic Helium 3 3d→2p X-rays

Ryugo S. Hayano University of Tokyo

J-PARC PAC, July 1, 2006

Collaboration

G. Beer¹, H. Bhang², P. Buehler³, M. Cargnelli³, J. Chiba⁴, S. Choi², C. Curceanu⁵,
Y. Fukuda⁶, C. Guaraldo⁵, T. Hanaki⁴, R. S. Hayano⁷, A. Hirtl³, M. Iio⁸, M. Iliescu³,
T. Ishikawa⁷, S. Ishimoto⁹, T. Ishiwatari³, K. Itahashi⁸, M. Iwasaki⁸, P. Kienle³,
J. Marton³, Y. Matsuda⁸, H. Ohnishi⁸, S. Okada⁸, H. Outa⁸, M. Sato⁶, D. Sirghi⁵,
F. Sirghi⁵, S. Suzuki⁹, T. Suzuki⁸, H. Tatsuno⁷, D. Tomono⁸, E. Widmann³,
T. Yamazaki⁸, H. Yim², J. Zmeskal³

Victoria Univ.¹, SNU², SMI³, TUS⁴, INFN(LNF)⁵, Tokyo Tech⁶, Univ. of Tokyo⁷, RIKEN⁸, KEK⁹

What do we measure?

Why kaonic He X-rays?

P17 closely related to P15:

P15: A Search for deeply-bound kaonic nuclear states by in-flight ³He(K⁻, n) reaction

K- nucleus potential deep enough to accommodate the kaonic nuclear state(s)?

KHX

Potential depth vs Atomic binding energy(schematic)

Akaishi's prediction

(accommodates kaonic nuclear states)

Akaishi's prediction differs sharply from the K⁻ - nucleus potential obtained by "Global fit" to the existing K- atom X-ray data

Global fit to existing kaonic X-ray data

and such "shallow" potential cannot accommodate the kaonic nuclear bound states

Precise X-ray measurement can provide the decisive information

KEK PS E570 measured K⁻ ⁴He (Oct, Dec, '05)

measured 3 times before E570, all reporting LARGE (~40 eV) shifts

P17 will measure K⁻³He (J-PARC Day-1)

no data available yet

E570 SDD (silicon drift detector)

electrons drift to a small anode (small capacitance)

high resolution (185 eV FWHM @ 6.4 keV), large area (100 mm²)

8 such SDDs used in E570

E570 target & X-ray detectors

E570 Fiducial selection

E570 in-situ calibration

E570 1st cycle (2005.Oct)

E570 2nd cycle (2005.Dec)

E570 status

► High quality data on ⁴He accumulated

- Resolution : 185 eV @6.5keV (SDD)
- Statistical error : ~ 2 eV, Good S/N ratio (fiducial volume cut)
- In-situ energy calibration (Ti & Ni X-rays)
- ▶ Previous 3 experiments are most likely to be wrong, shift appears to be $|\Delta E| \le 10 \text{ eV}$ (PRELIMINARY)
- Now making sure that systematic error < statistical error</p>

P17 strategy

- SDD, Fiducial cut, in-situ calibration as in E570
- ³He target (mostly common to P15)
- small target volume (10% of E570) compensated by Be target window & SDD solid angle (x 3)
- stopped K⁻ @ K1.8BR (K1.8BR not optimized for stopped K⁻, but expected yield > E570 @ full intensity)

E570

P17

smaller target, side Be window

4-element SDD arrays (x 2)

Similar to the array (KETEK 100 mm²) shown here will be used

Optimum beam momentum: 0.75 GeV/c

E570: ~400 stopped K⁻ / spill

yield per spill

(flat top 0.7s, repetition 3.53s assumed)

Tracking detectors

In the proposal, we said

"The beamline tracking counters and chambers, and the "vertex" counters and chambers used in E570 will also be used in the present experiment."

Tracking detectors

But we will instead use the CDS (Cylindrical Detector System) of P15

Cylindrical Detector System (CDS)

- CDS magnet : Solenoid magnet
- Cylindrical Drift Chamber (CDC)
- Cylindrical Detector Hodoscope (CDH)
- Veto counter : Kaon Decay Veto and Beam Veto

Cylindrical Detector System (CDS)

- Magnet not needed
- Inner tracking chamber removed
- Larger target vacuum vessel
- SDDs placed outside of the beam halo

P17 SUMMARY

Reaction	Stopped K ⁻ + ³ He \rightarrow hv(~6.4 keV) + X
Primary beam	30 GeV, 9 μ A proton
Secondary beam	0.75 GeV/c K ⁻
Beamline	K1.8BR
Target	Liquid ³ He, diameter 6.4cm, length 15 cm (482.5 cm ³)
Detectors	8 x 100 mm ² SDDs beamline counters & chambers (P15) vertex trigger counters & chambers (P15)
Beam time	10 days for commissioning +3.5 days at K1.8BR (full intensity) +35 days at K1.8BR (10% intensity)

- P17's physics goal closely related to that of P15
- Precise K⁻³He X-ray shift: crucial information to understand the nature of kaon nuclear bound states
- high-quality physics output: 1 month even with 10% of the PS intensity
- ideal for the DAY-1 experiment
- share resources with P15 (target, CDS, DAQ and people)
- Makes sense to run P17, and then P15