# <u>T2K</u>

# (Tokai to Kamioka Neutrino Oscillation Experiment)

- 1. The T2K collaboration
- 2. Main physics goals
- 3. Experimental setup and construction status
- 4. Sensitivities
- 5. Financial situation (if necessary)

## J-PARC Program Advisory Committee Meeting Koichiro Nishikawa

**KEK** 

July 1, 2006

## **T2K Collaboration**



- 11 Countries (number of members)
  - -Canada(24), France(8), Italy(11), Japan(46), Korea(9), Poland(1), Russia(8), Spain(12), Switzerland(3), UK(25), USA(42)
  - −58 Institutes, 189 Ph.D. members
- K2K, Super Kamiokande, SNO, CHOOZ, IMB, ...IL@

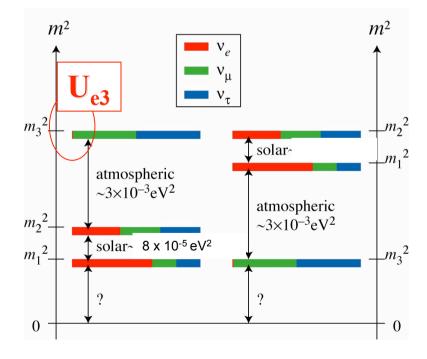
Non-zero mass of neutrinos!

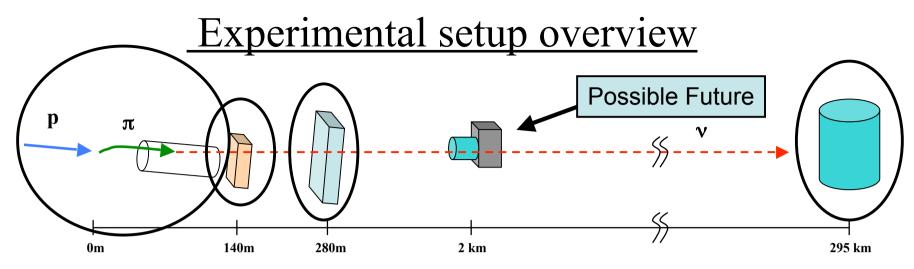
What kind of physics can have comparable impact?

Physics esp. history of neutrino studies show *full of surprises*(Kamiokande for Kamioka Nucleon decay Experiment!)

## 1. Look for un-expected by precision measurements of oscillation

- 3 generation (paradigm)
  - Consistency of  $\Delta m^2$  in disappearance and appearance processes
  - Sub-process of flavor changing process (in addition to osc.)
  - Oscillation pattern ....


## 2. $v_e$ appearance


- The last mixing to be found
  - $\theta_{23} \sim 45^{\circ} \theta_{12} \sim 34^{\circ}$ , Is  $\theta_{13}$  special?
- Determine future direction of neutrino experiment
  - Lead to only practical test of CPV in leptonic process
  - Complex phase in mixing in light neutrinos  $\rightarrow$  leptogenesis?

Emphasis on lepton ID and the determination of neutrino energy  $E_{v_3}$ 

# Bread & butter physics in next generation accelerator experiments

- Small  $v_e$  component in v3  $U_{e3} = 0$ ?
  - $\theta_{23}$ ~45°  $\theta_{13}$ ~34°,
  - Is  $\theta_{13}$  much smaller or a little smaller? (test to 3°)
- $\begin{vmatrix} \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{vmatrix} = \begin{vmatrix} \mathbf{U}_{\mu 1} & \mathbf{U}_{\mu 2} & \mathbf{U}_{\mu 3} \\ \mathbf{U}_{\tau 1} & \mathbf{U}_{\tau 2} & \mathbf{U}_{\tau 3} \end{vmatrix} \begin{vmatrix} \mathbf{v}_{2}(\mathbf{m}_{2}) \\ \mathbf{v}_{3}(\mathbf{m}_{3}) \end{vmatrix}$
- v3 consists of  $v_{\mu}$ ,  $v_{\tau} = 50.50$ ?
  - Another symmetry?
- Are neutrino mass and charged lepton mass ordering same or inverted
  - Is the largest component in ve: v1 the lightest?
- Possible differentiation between particle and anti-particle

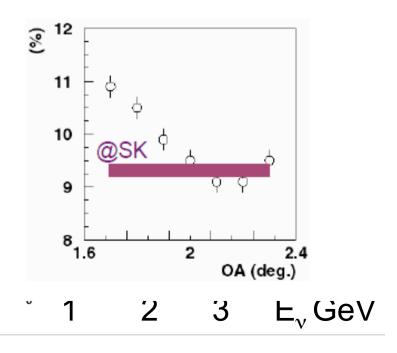




## • Beam line

## • Muon monitors @ ~140m

- Fast (spill-by-spill) monitoring of beam direction/intensity  $(\pi \rightarrow \mu \nu)$ 


## • First near detector @280m

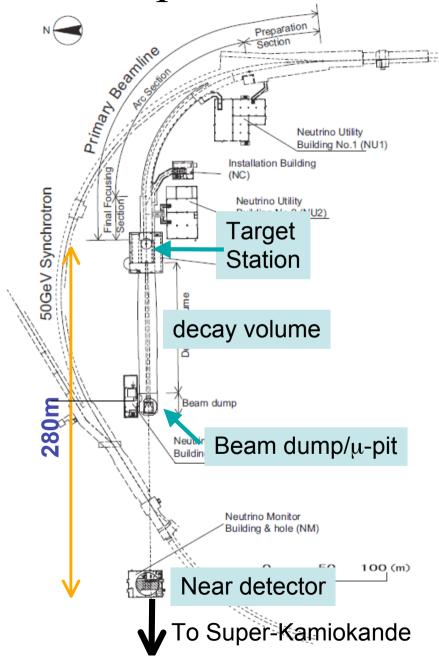
- Flux/spectrum/ve off-axis
- intensity/direction on-axis

## • Far detector @ 295km

Super-Kamiokande (50kt)

# NC-π<sup>0</sup> / CC ratio




Components in T2K Experiment

## **Components**

- Primary proton beam line
  - Normal conducting magnets
  - Superconducting arc
  - Proton beam monitors
- Target/Horn system
- Decay pipe
- Beam dump
- Muon monitors
- Near neutrino detector

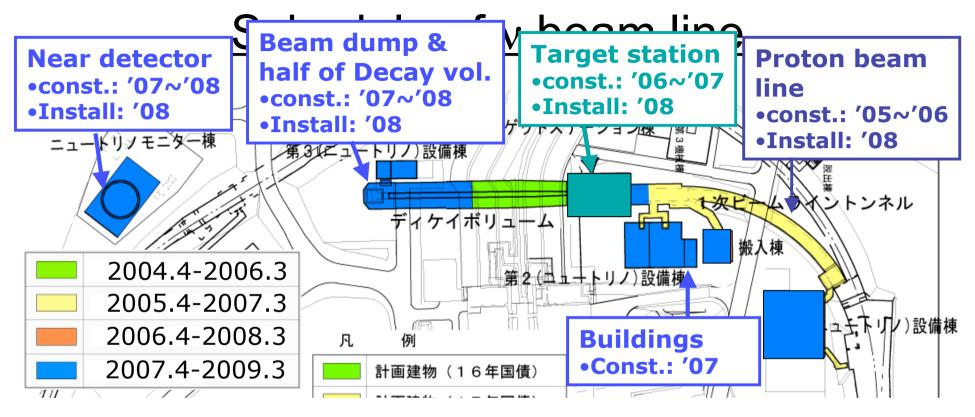
## **Special Features**

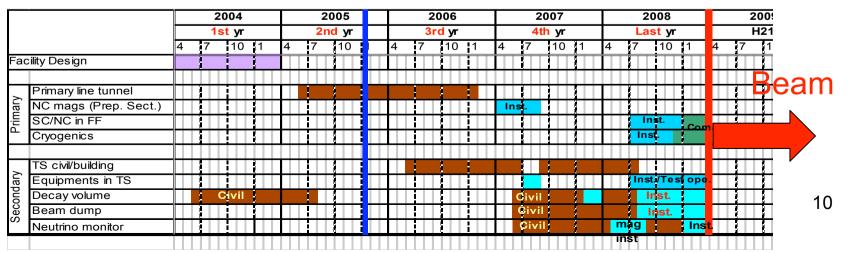
- Superconducting combined function magnets
- Off-axis beam



# External reviews on T2K

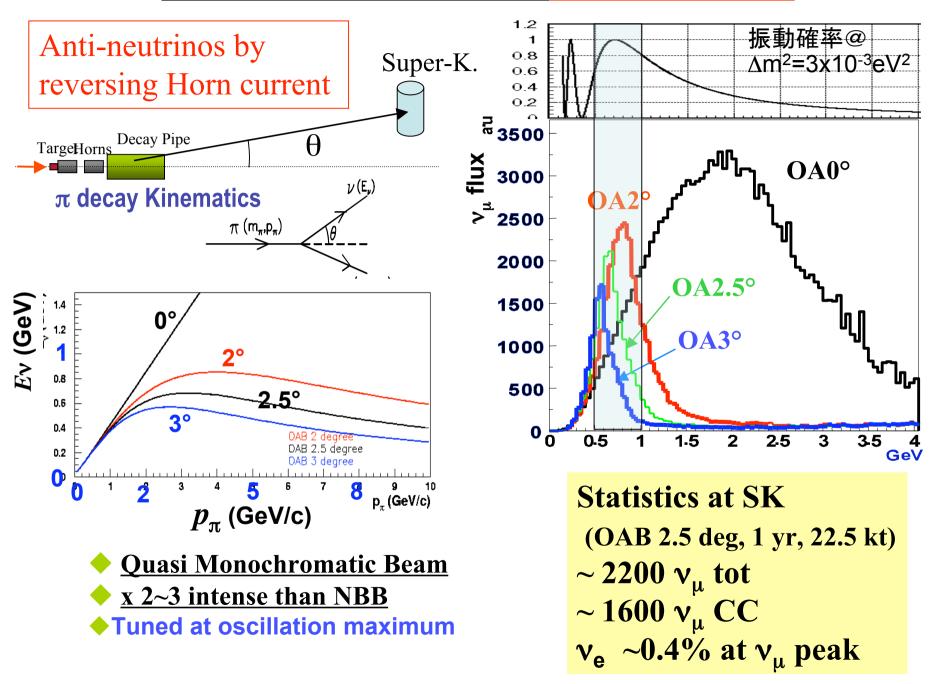
- International Advisory Committee has been endorsing the highest priority for T2K (2002, 03, 04, 05, 06)
- Neutrino Technical Advisory Committee (Reviewers from FNAL, TRIUMF, CERN and KEK) has reviewed technical aspects of beam line (Nov. 12,13, 2003, Apr. 26~28, 2005)
- Radiation Safety Review Committee has been formed and will conclude within this fiscal year


# Beam line status (examples)


- Super-Conducting magnet has been fully tested at I=7700A (eq. 50 GeV) without quench
  - mass production started
- Vacuum window design and prototyping at RAL
  - To be fixed in a month
- Horn magnet long term test has been started
  - Started the test at 320kA (full current) yesterday!
- Target
  - Thermal shock wave analysis, CFD analysis, erosion, oxidization
  - Manufacturing methods established (graphite rod, Ti tubing)
  - 1/20 scale cooling test done
  - Helium circulation system purchased
- Beam line construction detailed design completed

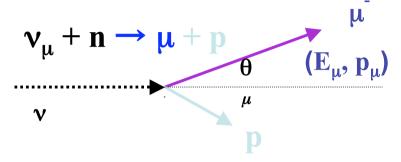
# Summary of Status

|                          | Conceptual<br>Design | Engineering<br>Design | Real<br>Production | Installati<br>on | Operation test |
|--------------------------|----------------------|-----------------------|--------------------|------------------|----------------|
| Proton Beam monitor      | Partially            | Starting              | 2006~              | 2007~            | 2008           |
| Superconducting magnets  | Done                 | Done                  | ~10%               | 2008             | 2008           |
| Cryogenics               |                      |                       | 2006~              | 2008             | 2008           |
| Normal Conducting        |                      |                       | ~25%               | 2007~            | 2008           |
| magnets<br>Vacuum system |                      |                       | 2006~              | 2007~            | 2008           |
| Target                   |                      |                       |                    | 2008             | 2008           |
| Horn                     |                      |                       |                    | 2008             | 2008           |
| Target Station           |                      |                       | 2006~              | 2007~            | 2008           |
| Beam Window              | Starting             |                       |                    | 2008             | 2008           |
| Decay Volume             |                      |                       |                    | ~60%             | 2008           |
| Beam Dump                |                      |                       | 2006~              | 2008             | 2008           |
| Muon monitor             |                      |                       |                    | 2008             | 2008           |

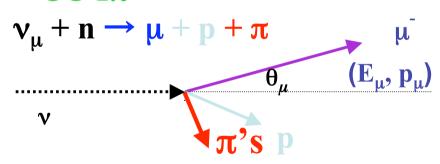

- Working design in hand for most of the components
- Shifting to prototyping, final engineering design, production



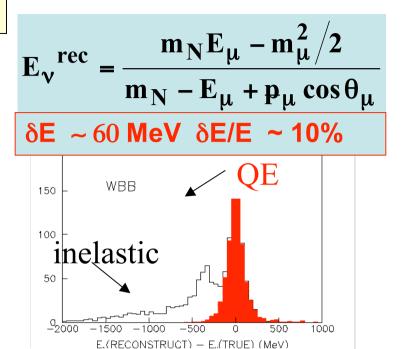



# Main features of T2K

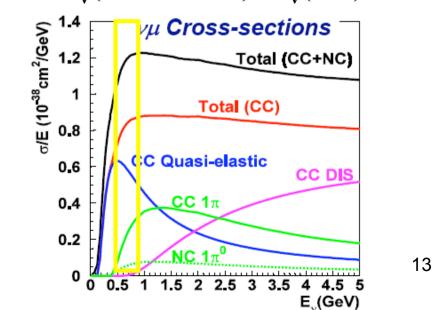
## Narrow intense beam: Off-axis beam




## Ev reconstruction at low energy

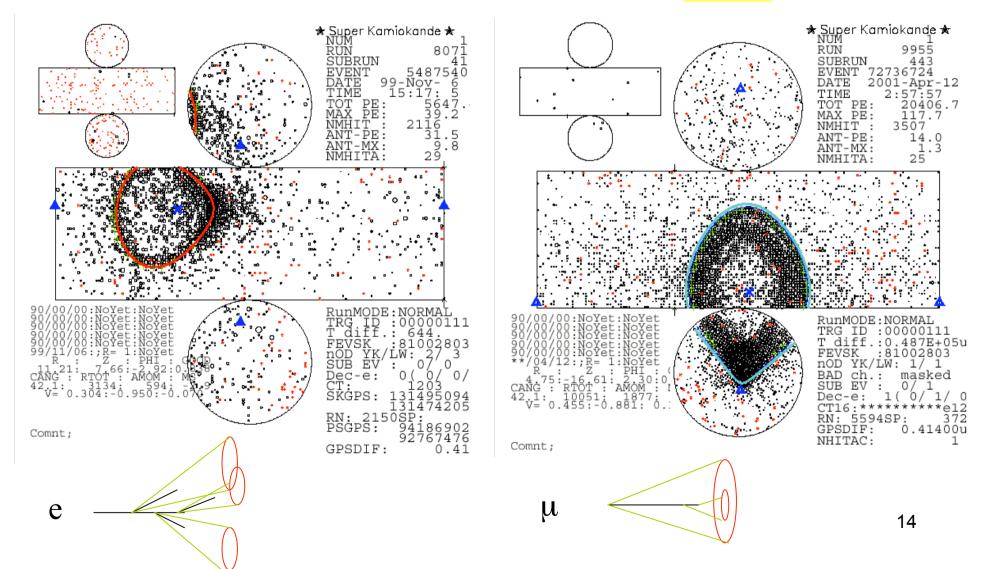

## **Quasi-Elastic process**



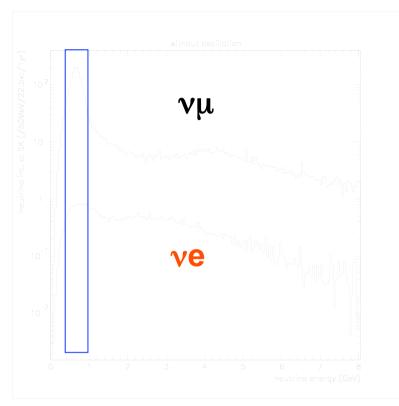

### $CC 1\pi$



# $\begin{array}{c} NC 1\pi \\ \nu_{\mu} + n \rightarrow \nu + p + \pi's \\ \nu \end{array}$



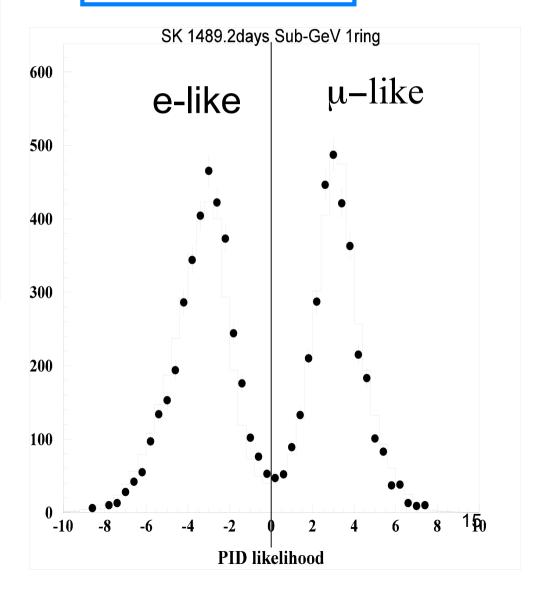

## $E_{\nu}$ (reconstructed) – $E_{\nu}$ (true)




# PID in SK

e-like μ-like



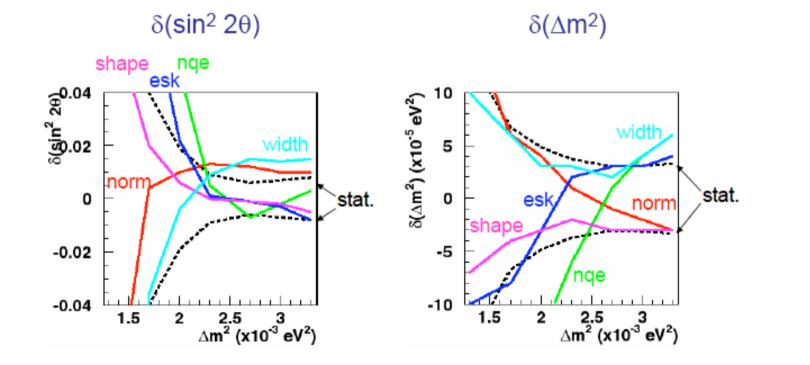

# Particle ID (e & μ) (in single ring events)



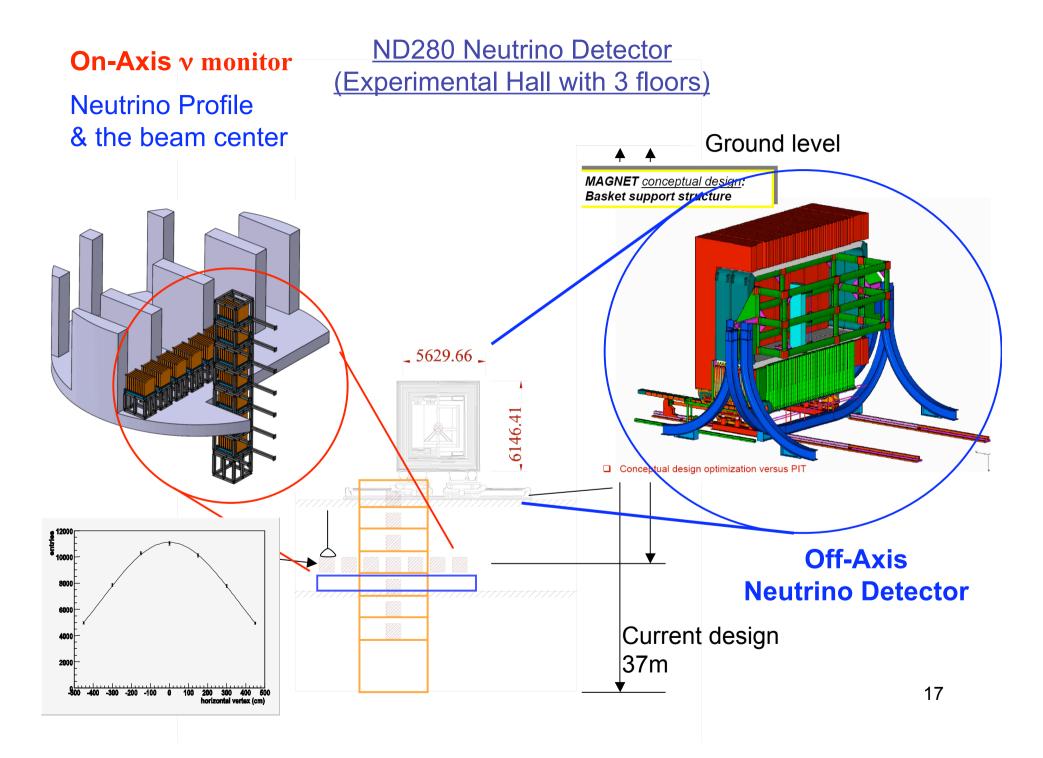
10% measurement on  $NC\pi^0$  in 280m near detector

BKGs become to 1/3 by  $E_{rec}$  requirement

Super-Kamiokande Atmospheric data




# Precision measurement of $\theta_{23}$ , $\Delta m^2_{23}$ possible systematic errors sources


```
Systematic errors and assumed knowledge
normalization (10% (5%(K2K))
non-QE/QE ratio (20% (to be measured))
E scale (4% (2%@K2K))
Spectrum shape (Fluka/MARS → (Near D.))
Spectrum width (10%)
```

**Set at OA 2.5**°

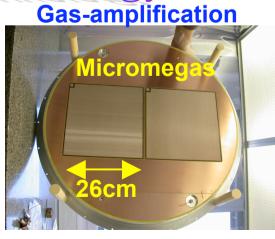
```
\delta(\sin^2 2\theta_{23}) \sim 0.01
\delta(\Delta m_{23}^2) < 1 \times 10^{-4} \text{ eV}^2
```



16



## Off-Axis Neutrino Detector (by all countries)


- Measurement of v flux and  $\sigma$  in the SK direction with magnet
  - $-~\nu_{_{\rm I\! L}}$  ,  $\nu_{_{e}}$  and anti- $\nu_{_{\rm I\! L}}$  flux and the energy spectrum.
  - Quasi-Elastic (Signal for E, reconstruction)
  - Inelastic  $\pi^{\pm,0}$  production (background for beam understanding)
- Detector components.
  - TPC
  - Fine-Grained Scintillator detector (FGD) for CC interaction.
  - Lead/Scintillator tracking detector for  $\pi^0$
  - Electron Calorimeter
  - Muon Range Detector

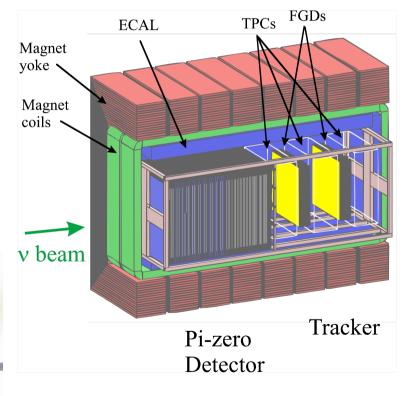
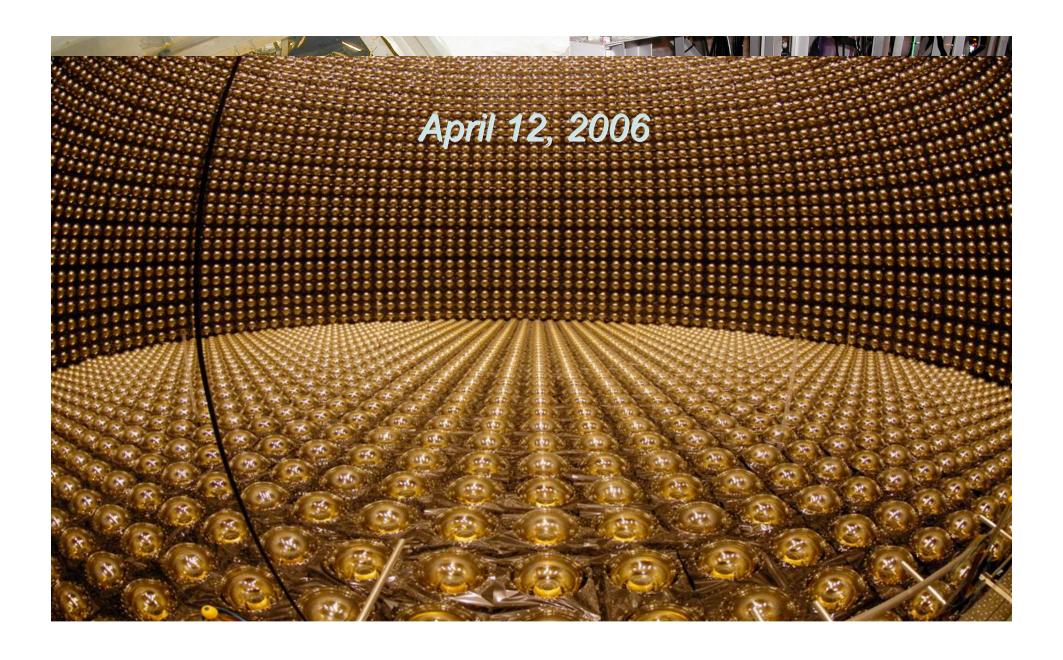



Photo-Sensor


WPPC/Sign

mm





Complete R&D 18 → mass production



Super Kamiokande has been fully rebuild 19

# Physics sensitivities

# Three contributions in v<sub>e</sub> appearance

$$P(\nu_{\mu} \rightarrow \nu_{e}) = 4C_{13}^{2}S_{13}^{2}S_{23}^{2}\sin^{2}\Phi_{31}$$

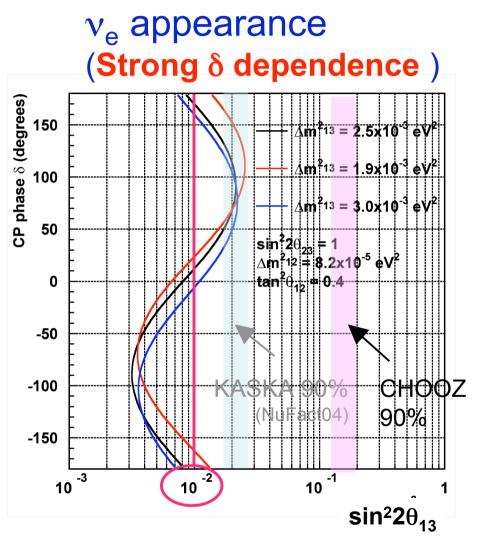
$$+8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23})\cos\Phi_{32}\sin\Phi_{31}\sin\Phi_{21}$$

$$-8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta\sin\Phi_{32}\sin\Phi_{31}\sin\Phi_{21}$$

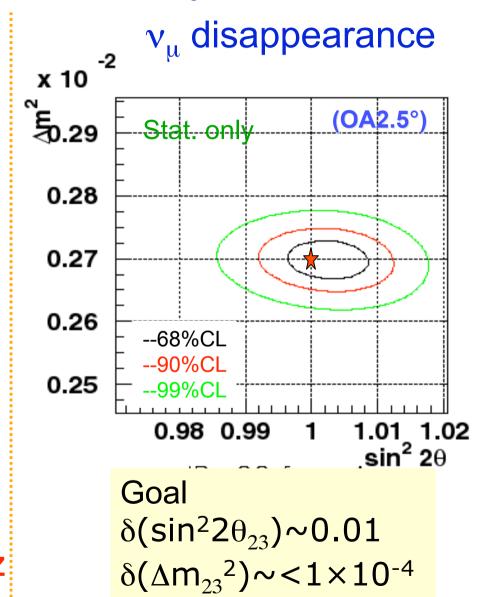
$$+4S_{12}^{2}C_{13}^{2}(C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta)\sin^{2}\Phi_{21}$$

$$-8C_{13}^{2}S_{13}^{2}S_{23}^{2}(1 - 2S_{13}^{2})\frac{aL}{4E}\cos\Phi_{32}\sin\Phi_{31}$$
mass hierarchy
$$-8C_{13}^{2}S_{13}^{2}S_{23}^{2}(1 - 2S_{13}^{2})\frac{aL}{4E}\cos\Phi_{32}\sin\Phi_{31}$$
mass hierarchy

$$\delta \rightarrow -\delta$$
, a  $\rightarrow$  -a for  $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ 


$$\Phi_{ij} = \Delta m_{ij}^2 L / 4E, \quad S_{ij} = \sin \theta_{ij}, \quad C_{ij} = \cos \theta_{ij}$$

L: flight length, E: neutrino energy,


 $\Delta m_{ii}^2 \equiv m_i^2 - m_i^2$ ,  $m_i$ : mass eigenvalues

- L/E~3 x 10<sup>2</sup> (km/GeV),  $\Phi_{32}$  (=(m<sub>3</sub><sup>2</sup>- m<sub>2</sub><sup>2</sup>)L/4E) ~ $\Phi_{31}$ ~ $\pi$ /2,  $\Phi_{12}$ ~0.03
- $\nu_{\mu} \rightarrow \nu_{e}$  three contributions
- 1 Term which is same for neutrinos and anti-neutrinos
- 2 CP violating term
- 3 Matter effect (proportional to L or E at constant L/E)
- It is almost impossible to change distance or neutrino energy
- 1. Compare Neutrinos and Anti-neutrinos
- 2. Compare with reactor data
- Make matter effect small by using low energy neutrinos!

# T2K Physics Sensitivity

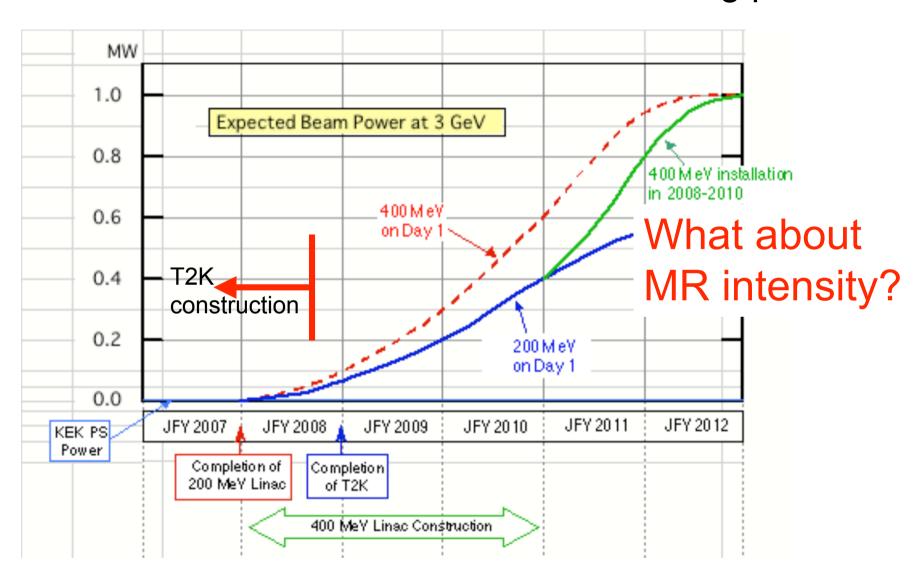


>10 times improvement from CHOOZ



# Summary of main features of T2K

- 295 km baseline and  $\Delta m^2 (\sim 2.5 \times 10^{-3} \text{ eV}^2)$
- Oscillation maximum occurs at sub-GeV neutrino energy
- Off-axis beam (low energy with small high energy tail)
  - 1. Two body reaction  $(v n \rightarrow \mu p)$  dominates :Quasi elastic (QE)
    - 1. 1,2 prong events dominate  $\rightarrow$  relatively easy PID
    - 2. Measurement of  $\theta_{\mu}$ ,  $p_{\mu} \rightarrow E_{\nu}$  can be calculated
    - 3. Small high energy tail  $\rightarrow$  Small  $\pi^0$  -BKG from in  $\nu_e$  search
      - $\rightarrow$  Small  $\pi^{+-}$ -BKG from Ev reconst.
  - 2. Negligible matter effect (to be sensitive to CP term (in the future))
- Super-Kamiokande as the far detector
  - 1. Analysis of water Cherenkov detector data has accumulated almost twenty years of experience
  - 2. K2K has demonstrated BG rejection in  $v_e$  search
- Proper coverage of near detector(s)
  - 1. Cross section ambiguity (measurements at close distance)
- Accumulation of technologies on high power beam handling


# Conclusion

- Strong international team
- Discovery of finite neutrino mass is, so far the only one evidence beyond the 'Standard Model' and can be a window for unexpected and possibly ultra high energy physics
- Good beam energy-detector combination for high precision measurements
- Super-Kamiokande has been fully rebuild
- Intensive technical review have been done on beam line
  - Many difficulties have been overcome and the construction going well
- We can stay in budget for entire experiment
  - Inviting foreign contributions for improvements of the experiment
- Working hard to start experiment in Apr. 2009

# Backup slides

# MR intensity

# 3 GeV RCS commissioning plan

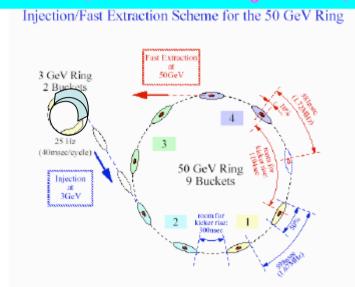


# Intensity of MR

J-PARC start with 180 MeV LINAC

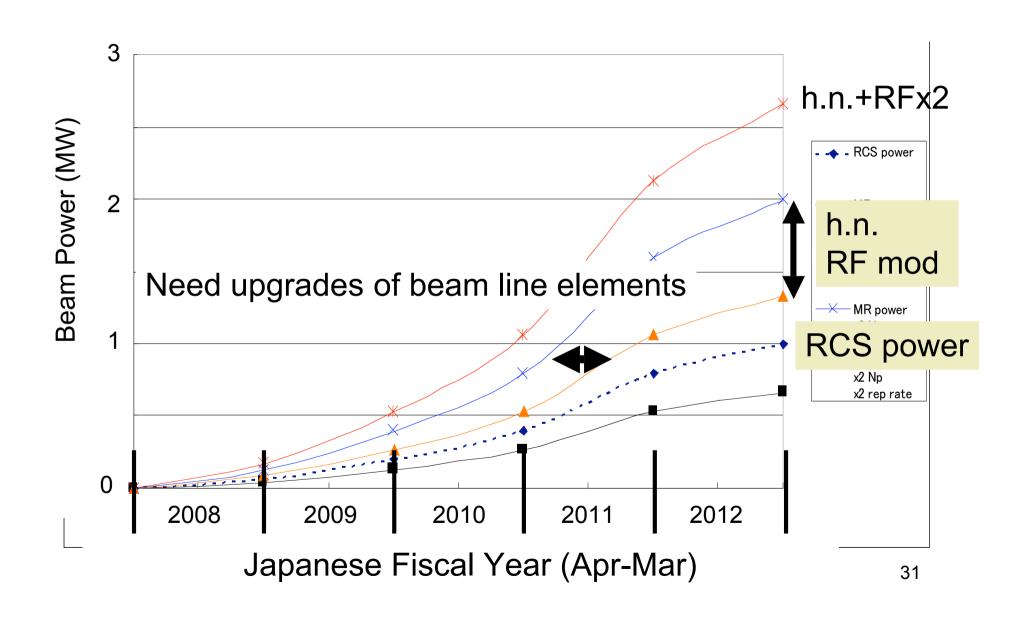
Currently, following realistic scenarios have been studied

- Intensity in 3 GeV Booster limited by space charge effect
  - increase number of bunches in MR by RF freq. increase in MR (injection time)
  - larger bucket in Booster to increase no. of protons/bunches
  - More RF power to increase rep. (with money)
- Every possible effort to increase MR intensity faster than 3GeV booster
- Badget request will be submitted to restore 400 MeV LINAC (2008,9,10?)
- Eventually more than MW beam


## Injection Scheme to the 50 GeV MR

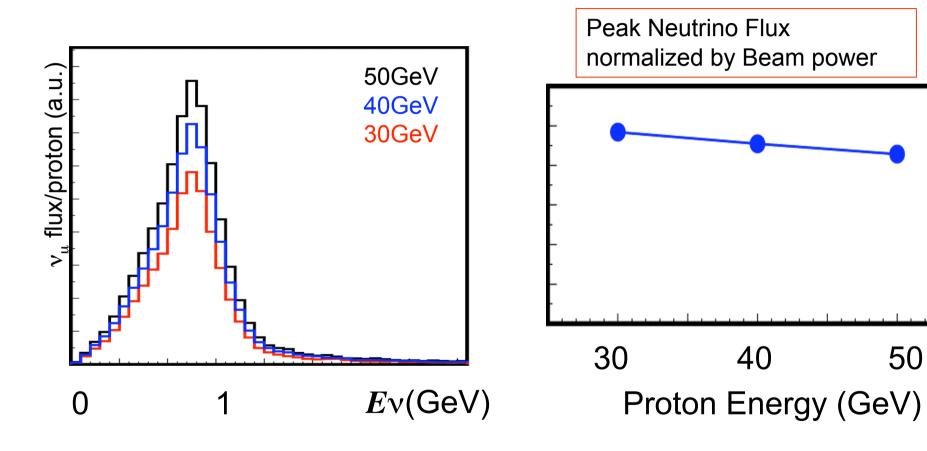
## h = 18 (181-MeV injection)

Injection/Fast Extraction Scheme for the 50 GeV Ring


OR single bunch
larger bucket (more protons
/bunch)
keep h=9 (rep. rate is same as
original

## h = 9 (400 - MeV injection)




| Injection time                | h = 18<br>560ms | h = 9<br>120ms           |
|-------------------------------|-----------------|--------------------------|
| RF frequency                  | 3.34-3.44       | 1.67-1.72 MHz            |
| Injection kicker flat top     | 130ns           | 900ns : PFN cable length |
| Pulse bending magnet flat top | 600ms           | 120ms                    |
| Injection kicker rise time    | 170ns           | 300ns                    |

# Accelerator commissioning plan



# Requirement on Proton Energy

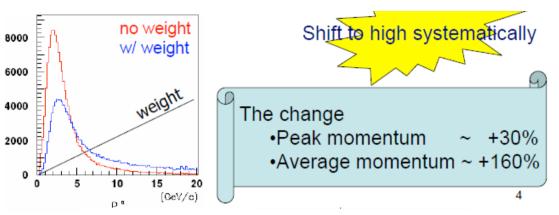
# Neutrino Flux $\sim$ - Proton beam power ( $E_p \times N$ )



 $\sin^2 2\theta_{13}$  3 $\sigma$ —Discovery limit

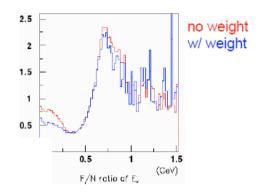
|                        |     | 2009   | 10     | 11     | 12    | 14   | 15 |
|------------------------|-----|--------|--------|--------|-------|------|----|
| MINC                   |     | 0.11   | 0.09   | 0.08   | 0.075 | 0.06 |    |
| D.Cho                  |     | 0.09   | 0.05   | 0.05   |       |      |    |
| D.CHC                  | JUZ | (0.21) | (0.18) | (0.18) |       |      |    |
| T2K 0.75MW within 2010 |     | 0.05   | 0.03   | 0.02   | 0.018 |      |    |
|                        |     | (      | ).5MW  | 0.08   |       |      |    |

(Nova) 0.05 Daya Bay  $??? \leftarrow 0.015 \rightarrow ?????$ 


## **Assumptions**

MINOS: 2x10<sup>20</sup> POT/year CNGS too small detectors

Double Chooz: 2008 new near detector assumed

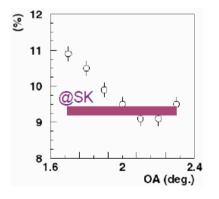

Nova: if funding start in 2007.10

Present limit (Chooz)  $\sin^2 2\theta_{13} < 0.14$  @90%CL



Far/Near ratio also hardly changed!

## Change of Far/Near ratio




The difference is less than 5% at 0.3GeV<Ev<0.8GeV

## Fraction of interaction mode

|          | CC    |       | NC         |       |  |
|----------|-------|-------|------------|-------|--|
|          | QE    | other | $1\pi^{0}$ | other |  |
| SK       | 37.4% | 34.2% | 4.9%       | 23.5% |  |
| Off-axis | 38.2% | 33.0% | 4.4%       | 24.4% |  |
| On-axis  | 19.2% | 54.5% | 5.3%       | 21.0% |  |

## $NC-\pi^0$ / CC ratio



The best position is OA2.0~2.3deg

34

#### sensitivities for sin<sup>2</sup>2θ<sub>13</sub> **Preliminary** 90%C.L. sensitivities BG syst=10% exp'd signal+BG 50 total BG **CHOOZ** $y_{\mu}$ BG excluded 40 Exp'ed $\Delta m_{13}^2$ 30 Off axis 2.5deg, 50GeV 5yr $\Delta m^2 = 2.5 \times 10^{-3} \text{ eV}^2$ $\sin^2 2\theta_{13} = 0.1$ >10times improvement Off axis 2.5deg, 50GeV 5yr $\delta$ =0, no matter $\sin^2\theta_{23}=1$ 2 0 3 5 4 $\sin^2 2\theta_{13}$ reconstructed E<sub>v</sub>(GeV) $\sin^2 \theta$ 13 Osc' d $\nu$ e Signal+BG $\nu \mu (CC+NC)$ Bean $\nu$ e 10 0.1 103 26 0.01 10 10

(OA 2.5deg, 50GeV 5yr)

# 1st technical advisory committee (ν-TAC)

- Nov. 12,13, 2003 (Just before approval)
- E.Blackmore (Chair,TRIUMF)
- Experts from NuMI/CNGS, SCmags/cryo., accelerator, remote handling
- Reviewed
  - Beam line concept
  - Conceptual design of all beamline components
  - Extensive review on SCmag (since most advanced, schedule pressed)
- Executive summary said
  - The committee feels that there are no "show stoppers" in terms of meeting the design goals for 0.75 MW operation.
  - A time frame of 5 years for the completion of the neutrino facility is a realistic goal.

#### 2. Committee members

| 2. committee members |                                        |                             |  |  |  |
|----------------------|----------------------------------------|-----------------------------|--|--|--|
| Ewart Blackmore      | Head of Accelerator Technology         | General (incl. proton beam  |  |  |  |
|                      | Division, TRIUMF                       | monitor, remote handling)   |  |  |  |
| Konrad Elsener       | Project leader of CNGS (CERN           | Target station, Decay pipe, |  |  |  |
|                      | Neutrinos to Gran Sasso), CERN         | Beam dump                   |  |  |  |
| Kenji Hosoyama       | Professor, Accelerator Laboratory,     | Cryogenics                  |  |  |  |
|                      | KEK (Responsible person for cryogenics |                             |  |  |  |
|                      | for KEK-B SC RF cavity)                |                             |  |  |  |
| James Hylen          | Leader of Neutrino Beam Devices        | Target, horn, target staion |  |  |  |
|                      | group in NuMI Project, FNAL            |                             |  |  |  |
| Takahiko Kondo       | Head of Phys. Div. II, Institute for   | Neutrino beam               |  |  |  |
|                      | Particle and Nuclear Studies, KEK      |                             |  |  |  |
|                      | (Group leader of ATLAS-Japan)          |                             |  |  |  |
| Katsunobu Oide       | Head of Acc. Div. II, Accelerator      | Proton beam optics          |  |  |  |
|                      | Laboratory, KEK (Leader of             |                             |  |  |  |
|                      | commissioning group of KEK-B)          |                             |  |  |  |
| James Strait         | US LHC Accelerator Project Manager,    | Superconducting magnets     |  |  |  |
|                      | Technical Division, FNAL               |                             |  |  |  |
| Kiyosumi Tsuchiya    | Professor, Cryogenic Science Center,   | Superconducting magnets     |  |  |  |
|                      | KEK (Responsible person for QCS for    |                             |  |  |  |
|                      | KEK-B and TRISTAN)                     |                             |  |  |  |
| •                    |                                        |                             |  |  |  |

# $2^{\text{nd}} \nu\text{-TAC}$

- Apr. 26~28, 2005
- Similar members, + Dynamic stress expert
- Timing when R&D & design are well advanced and being finalized
- All components reviewed, w/ major concern on
  - Thermal stress analysis,
  - Maintenance scenario



| Committee members            |                                      |                         |
|------------------------------|--------------------------------------|-------------------------|
| Ewart Blackmore              | Head of Accelerator Technology       | General (incl. proton   |
| (Chair)                      | Division, TRIUMF                     | beam monitor, remote    |
| ewb@triumf.ca                |                                      | handling)               |
| Konrad Elsener               | Project leader of CNGS (CERN         | Target station, Decay   |
| Konrad.Elsener@cern.ch       | Neutrinos to Gran Sasso), CERN       | pipe, Beam dump         |
| Kenji Hosoyama               | Professor, Accelerator Laboratory,   | Cryogenics              |
| Kenji.Hosoyama@kek.jp        | KEK (Responsible person for          |                         |
|                              | cryogenics for KEK-B SC RF cavity)   |                         |
| James Hylen                  | Leader of Neutrino Beam Devices      | Target, Horn, Target    |
| hylen@fnal.gov               | group in NuMI Project, FNAL          | staion                  |
| Takahiko Kondo               | Head of Phys. Div. II, Institute for | Neutrino beam           |
| <u>Taka.Kondo@kek.jp</u>     | Particle and Nuclear Studies, KEK    |                         |
|                              | (Group leader of ATLAS-Japan)        |                         |
| Clive Mark                   | Leader of Remote Handling Group,     | Remote handling         |
| cmark@triumf.ca              | TRIUMF                               |                         |
| Katsunobu Oide               | Head of Acc. Div. II, Accelerator    | Proton beam line        |
| <u>Katsunobu.Oide@kek.jp</u> | Laboratory, KEK (Leader of           |                         |
|                              | commissioning group of KEK-B)        |                         |
| Peter Sievers                | Professor, Accelerator Technology    | Target, Horn            |
| Peter.Sievers@cern.ch        | Department, CERN                     |                         |
| James Strait                 | Head of Particle Physics Division,   | Superconducting magnets |
| strait@fnal.gov              | FNAL                                 |                         |