Proposal for J-PARC 50GeV PS

Study on Λ -Hypernuclei with the Charge-Exchange Reactions

Atsushi Sakaguchi (Osaka Univ.)

Collaboration: Osaka U., KEK, Osaka E. U., RIKEN, Seoul Natl. U., JAEA, U. Torino, INFN and INAF-IFSI

Abstract

- Studies on Λ-hypernuclei with Charge-Exchange (CX) reactions
- Proposal of experiments (at Day-1)
 Exp.1: Production of neutron-rich hypernuclei
 Production of exotic hypernuclei
 ⇒ Λ-N interaction in neutron-rich environment
 ⇒ EoS and structure of neutron stars
 Exp.2: Non-mesonic weak decay(NMWD) of ⁴_ΛHe Spin-isospin structure of Λ-Nucleon weak int.
 ⇒ "ΔI=1/2 rule" in NMWD of hypernuclei

Atomic Nuclei

Stable carriers of baryon numbers

- Attractive NN int.
 - \Rightarrow Guarantees formation of "Matter"
- Repulsive NN int.
 - \Rightarrow Avoids collapse to black hole
- Interplay of NN interactions
 - \Rightarrow Drives evolution of stars and the universe

Knowledge on NN interaction

- Nuclear structure
- NN scattering data

Hypernuclei

"Stable" carriers of baryon numbers "Stable" against strong int. S Quasi-stable objects Hez Stable in neutron stars YN and YY interaction Structure of neutron stars 11 j LI Source of info. on YN and YY interaction He 6 3 F Structure of hypernuclei Production of hypernuclei Level energy measurement

Structure study on hypernuclei

- Survey only limited region of isotopes
- Lack of spectroscopic tools

Charge-Exchange Reactions

New category of production reaction

- New hypernuclear species
- Mirror and neutron-rich hypernuclei

Exotic Objects

Heaviest stable hydrogen ?

Our Strategy

Develop charge-exchange reactions Single charge-exchange (SCX) reactions

 $\left(\pi^{-},K^{0}
ight)$

Suitable to produce mirror-hypernuclei

$${}^{4}He \xrightarrow{\mathsf{NCX}} {}^{4}_{\Lambda}He \xrightarrow{\mathsf{A}} {}^{4}_{\mathcal{H}} \xrightarrow{\mathsf{Systematic study}} {}^{4}_{\mathcal{SCX}} {}^{4}_{\Lambda}H \xrightarrow{\mathsf{A}} {}^{4}_{\mathcal{H}} \xrightarrow{\mathsf{Systematic study}} {}^{4}_$$

Double charge-exchange (DCX) reactions

$$\left(\pi^{-},K^{+}
ight)$$
 $\left(K^{-},\pi^{+}
ight)$

Production of neutron-rich hypernuclei

• Practical problems (π^-, K^0)

- Small detection efficiency for SCX:
- Small reaction cross section for DCX: +10⁻³

High-intensity beam line for CX reaction

- Pion beam intensity ~ 10⁹/spill: 10²
 - Override small yield
 - High-resolution achievable at the same time
- A long-range plan
 - Construction of new beam line and spectrometer
- Experiments at Day-1
 - Start study with available infrastructure

Experiments at Day-1 (1/2)

Production of n-rich hypernuclei with DCX

- Structure of neutron-rich hypernuclei
- What we can learn ?
 - AN strong interaction in N \gg Z environment Close connection to EoS in neutron stars
- **•** Non-mesonic weak decay of ${}^{4}_{\Lambda}$ He
 - Measurement of $\Lambda n \rightarrow nn$ weak process
 - Complementary with $\Lambda p \rightarrow pn$ in ${}^4_{\Lambda}H$
 - What we can learn ? Spin-isospin structure of AN weak interaction Test of "\Delta I = 1/2 rule"

Neutron-Rich Hypernuclei

KEK-PS-E521

First successful experiment

n-rich hypernuclei **DCX** reaction

Reaction studied ${}^{10}B(\pi^-,K^+){}^{10}_{\Lambda}Li$

Cross section ~10 nb/sr small cross section

Experimental

No problem except for the small cross section We need good beam line and good spectrometer

Proposed experiment

- Reaction mechanism of DCX reaction Production of typical n-rich hypernuclei $^{10}B(\pi^-, K^+)^{10}_{\Lambda}Li \quad ^{12}C(\pi^-, K^+)^{12}_{\Lambda}Be$
- Another option

Study on structure of n-rich hypernuclei

 $^{6}_{\Lambda}$ H

Production of exotic hypernuclei $^{10}_{\Lambda}$ Li $^{9}_{\Lambda}$ He

and structure

Similar reaction Cross section and structure may differ Expected yield

Production of ⁹_AHe Assume similar cross section as ¹⁰_ALi

Yield = N	$N_{Beam} \times \frac{N_{Target}}{9} \times N_A \times \frac{d\sigma}{d\Omega} \times \Omega_{SP} \times \Omega_{SP}$	$\langle \varepsilon_{SP} \times \frac{Time}{T_{Cycle}}$	~400 ever	nts/2weeks
	Parameters	Values		
	π- beam momentum	1.2 GeV/c		
	π^{-} beam intensity	10 ⁷ /spill	N _{Beam}	
	PS acceleration cycle	3.4 sec	T _{Cycle}	
	⁹ Be target thickness	3.5 g/cm ²	N _{Target}	
	Reaction cross section	10 nb/sr	dσ/ďΩ	
	Spectrometer solid angle	0.1 sr	Ω_{SP}	
	Spectrometer efficiency	0.5	ε _{SP}	

Requested beamtime for this study

2 weeks for ${}^{9}_{\Lambda}$ He and 2 weeks for ${}^{6}_{\Lambda}$ H (4 weeks in total)

+ Beam tuning and energy/efficiency calibration

Experiments at Day-1 (2/2)

Production of n-rich hypernuclei with DCX

- Structure of n-rich hypernuclei
- What we can learn ?
 - AN strong interaction in N \gg Z environment Close connection to EoS in neutron stars
- **D** Non-mesonic weak decay of ${}^{4}_{\Lambda}$ He
 - Measurement of $\Lambda n \rightarrow nn$ weak process
 - Complementary with $\Lambda p \rightarrow pn$ in ${}^{4}_{\Lambda}H \leftarrow Need SCX$
 - What we can learn ?
 Spin-isospin structure of ΛN weak interaction Test of "ΔI=1/2 rule"

Non-Mesonic Weak Decay

Spin-isospin structure of NMWD

Initial	Final	Matrix element	Rate	I_f	Parity change	-
${}^{1}S_{0}$	${}^{1}S_{0}$	a	a^2	1	no	$\Gamma(\Lambda n \to nn)$
	${}^{3}P_{0}$	$\frac{b}{2}(\sigma_1 - \sigma_2)q$	b^2	1	yes	$\Gamma(\Lambda p \to np)$
${}^{3}S_{1}$	${}^{3}S_{1}$	c	c^2	0	no	
	${}^{3}D_{1}$	$\frac{d}{2\sqrt{2}}S_{12}(q)$	d^2	0	no	- (1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +
	${}^{1}P_{1}$	$\frac{\sqrt{3}}{2}e(\sigma_1-\sigma_2)q$	e^2	0	yes	$\sigma_0(1+\alpha\cos\theta_p)$
	${}^{3}P_{1}$	$\frac{\sqrt{6}}{4}f(\sigma_1+\sigma_2)q$	f^2	1	yes	_

- Branching ratio tell $d \approx f >> others$
- Decay asymmetry tell d >> f or d << f
- Possible answer: ¹S₀ amplitude (a and/or b)
- Observable sensitive to ${}^{1}S_{0}$ $\Gamma(\Lambda n \to nn; {}^{4}_{\Lambda}He) \Gamma(\Lambda p \to np; {}^{4}_{\Lambda}H)$

Beam line and spectrometer K1.8 beam line: 1.1GeV/c π⁺ beam ~10⁷/spill SKS spectrometer: ~100 msr Expected yield of ⁴_ΛHe(0⁺)

Parameters	Values	
π^{+} beam momentum	1.1 GeV/c	
$\pi^{\scriptscriptstyle +}$ beam intensity	10 ⁷ /spill	N _{Beam}
PS acceleration cycle	3.4 sec	T _{Cvcle}
Liquid ⁴ He target thickness	2 g/cm ²	N _{Target}
Reaction cross section	10 μb/sr	ds/ďΩ
Spectrometer solid angle	0.1 sr	Ω_{SP}
Spectrometer efficiency	0.5	€ _{SP}

$$Yield = N_{Beam} \times \frac{N_{Target}}{4} \times N_A \times \frac{d\sigma}{d\Omega} \times \Omega_{SP} \times \varepsilon_{SP} \times \frac{Time}{T_{Cycle}}$$

Yield ~ 38k ⁴_AHe(0⁺)/day

Decay particle detector

Direct measurement

Detect nn and np pairs Yield(n) Yield(p) Yield(nn)Yield(np)

Back-to-back kinematics Selection of $\Lambda N \rightarrow NN$ process Remove $\Lambda NN \rightarrow NNN$ process

Veto for negative pion BG Rejection with CDC MC study tells S/N≫10

Estimated yields

 $\Lambda n \rightarrow nn: ~120 \text{ events/2weeks}$ $\Lambda p \rightarrow np: ~3200 \text{ events/2weeks}$

Summary

We propose studies on Λ -hypernuclei with Charge-Exchange (CX) reactions Proposal of experiments (at Day-1) Exp.1: Production of neutron-rich hypernuclei ${}^{9}_{\Lambda}$ He ${}^{6}_{\Lambda}$ H Production of exotic hypernuclei Exp.2: Detailed study on NMWD of ⁴_AHe $\Gamma(\Lambda n \rightarrow nn; {}^{4}_{\Lambda}He)$ pin down ${}^{1}S_{0}$ contribution

Outputs expected

- ΛN strong int. in neutron-rich environment
- Spin-isospin structure of ΛN weak interaction