Measurement of X rays from Ξ^- atom

XiX Collaboration Spokesperson: K. Tanida (Kyoto Univ.) 30/June/2006

Collaboration

- Kyoto University
 - S. Dairaku, H. Fujimura, K. Imai, S. Kamigaito, K. Miwa, A. Sato,
 - K. Senzaka. K. Tanida (spokesperson), Č. J. Yoon
- Brookhaven National Laboratory
 - R. E. Chrien
- China Institute of Atomic Energy
 - Y. Y. Fu, C. P. Li, X. M. Li, J. Zhou, S. H. Zhou, L. H. Zhu
- Gifu University
 - K. Nakazawa, T. Watanabe
- *KEK*
 - H. Noumi, Y. Sato, M. Sekimoto, H. Takahashi, T. Takahashi, A. Toyoda
- JINR(Russia)
 - E. Evtoukhovitch, V. Kalinnikov, W. Kallies, N. Karavchuk,
 - A. Moissenko, D. Mzhavia, V. Samoilov, Z. Tsamalaidze,
 - O. Zaimidoroga
- Tohoku University
 - O. Hashimoto, K. Hosomi, T. Koike, Y. Ma, M. Mimori, K. Shirotori, H. Tamura, M. Ukai

Outline of the experiment

- The first measurement of X rays from Ξ -atom
 - Gives direct information on the Ξ -A optical potential
- Produce Ξ⁻ by the Fe(K⁻,K⁺) reaction, make it stop in the target, and measure X rays.

- Requested beamtime: 100 (+ 20/50) shifts
- Aiming at establishing the experimental method

Physics motivation

- Strangeness nuclear physics at S=-2 sector
 - Significant step forward from S = -1 system towards the multi-strangeness hadronic systems (e.g., neutron star)
 - First place where hyperon-hyperon interaction appears
 - Could be more dynamic than S=0 and S=-1 systems.
 - Large baryon mixing? Inversely proportional to mass difference ΞN-ΛΛ: 28 MeV → strong mixing in hypernuclei? ΛN-ΣΝ: ~80 MeV NN-ΔΝ: ~300 MeV
 - Does H dibaryon exist? As mixed state of $\Xi N-\Lambda\Lambda-\Sigma\Sigma$?
- Very little is known so far

 \rightarrow Main motivation of the 50 GeV PS.

Importance of Ξ systems

- Valuable information on ΞN (effective) interaction
 - e.g., How strong $\Xi N \rightarrow \Lambda \Lambda$ (and thus $\Xi N \Lambda \Lambda$ mixing) is?
 - Relevant to the existence of H dibaryon
 - ΞN component in $\Lambda\Lambda$ -hypernuclei
- How about A dependence?
 - One-meson exchange models predict significant A dependence.
 - In contrast to small A dependence in normal and Λ nuclei.
- Impact on neutron stars
 - Does Ξ⁻ play significant role in neutron stars because of its negative charge?
 - Need to know the ΞA interaction and its A dependence.
 - Σ^- was supposed to be important, but its interaction with neutron matter is found to be strongly repulsive.

Principle of the experiment

- Atomic state precisely calculable if there is no hadronic interaction
- 1st order perturbation

■ – **N** = 1 | ¹ = 1 | 1

- If we assume potential shape, we can accurately determine its depth with only one data
- Shape information can be obtained with many data
- Even if 1st order perturbation is not good, this is still the same.

• Successfully used for π^- , K⁻, \overline{p} , and Σ^-

X ray energy shift – real part Width, yield – imaginary part

Selection of targets

- Physics view: Batty et al. PRC59(1999)295
 - For given state, there is optimal target
 - Nuclear absorption is reasonably small
 - X-ray energy shift and width are the largest (~1 keV)

– They suggested $_9F$, $_{17}CI$, $_{53}I$, and $_{82}Pb$ for n=3,4,7,9.

n:4 → 3	5→4	6→5	7→6	8→7	9→8	10→9
F(Z=9)	CI(17)	Co(2 7)?	Y(39)?	l(53)	Ho(8 7)?	Pb(82)
131 (keV)	223	3124?	3924?	475	5178?	558

The choice depends on the optical potential itself
 → We can't know before the 1st experiment

For the 1st experiment

- We chose Fe (Iron) because of (mostly) experimental reason
 - Production rate: $A^{-0.62}$ as cross section scales with $A^{0.38}$
 - Stopping probability: requires high target density (Ξ^- range: 10-20 g/cm², $\beta\gamma c\tau \sim 2cm$)
 - X-ray absorption: significant at large Z
 - \rightarrow Small Z(A), yet high density
- Koike calculated the energy shift (width) & yield of the Fe X ray (n=6 → 5)
 - Woods-Saxon potential: –24 3i MeV
 - Energy shift: 4.4 keV, width: 3.9 keV
 - Yield per stopped Ξ^- : 0.1 (~0.4 without absorption)

Experimental Setup

K1.8 beamline of J-PARC

(K⁻,K⁺) detection system

- Mostly common with Hybrid-Emulsion experiment (P07: Nakazawa et al.)
- Long used at KEK-PS K2 beamline (E373, E522, ...)
 - Minor modification is necessary to accommodate high rate.
- Large acceptance (~0.2 sr)

Target setup

- Target: Iron plate of 6cm(w) x 1.5cm(h) x 3cm(t)
 - To accommodate expected K⁻ beam size
 - Height is important to reduce X-ray absorption
 - Actual size will be determined after beam-size measurement
- Stopping probability of produced $\Xi^{\scriptscriptstyle -}$
 - ~20% according to GEANT4 simulations
- X-ray absorption
 - 58% at 284 keV (Ξ⁻-Fe n=6→5)
 - 68% at 171 keV (Ξ⁻-Fe n=7→6)

X-ray detection

• Hyperball-J

- 40 Ge detectors
- PWO anti-Compton
- Detection efficiency
 16% at 284 keV
- High-rate capability
 < 50% deadtime
- Calibration
 - In-beam, frequent
 - Accuracy ~ 0.05 keV
- Resolution
 - ~2 keV (FWHM)

Notes on triggering

- 1st level trigger: (K⁻,K⁺) trigger similar to E373
 - Expected rate: 10000/spill
 - Mostly due to (K⁻,p) reaction (Note: there is no detector that rejects protons at the 1st level trigger in E373)
- We need an extra rejection factor ~ 10, even if we consider 2nd level triggers
- Cherenkov counter: n~1.1 (threshold: 1.1 GeV/c for K+, 2.05 GeV/c for p)
 - High density silica aerogel becomes available
 - Chiba University (Kawai group) & Russia (Dubna)
 - We just got a few samples of n~1.2
 - Backup: supercritical fluid (CF₄)

Schedule & budget

- Beamline detectors (~100 Myen):
 - Will be constructed by Kakenhi grant "Quark many-body systems with strangeness" (2005-2009)
 - Commonly used with other experiments
- KURAMA
 - Mostly reuse of the existing spectrometer.
 - New Cerenkov counter will be made in 2007.
- Hyperball-J (~300 Myen)
 - Will be constructed by Tohoku University with the Kakenhi grant.
- Construction & installation will finish by 2008.

Yield & sensitivity estimation

- Total number of K⁻: 1.0x10¹² for 100 shifts.
- Yield of Ξ
 - production: 3.7×10^6
 - stopped: 7.5×10⁵
- X-ray yield: 2500 for $n=6\rightarrow 5$ transition
 - 7200 for n=7→6
- Expected sensitivity
 - Energy shift: ~0.05 keV (systematic dominant)
 - → Good for expected shift (~1 keV, 4.4 keV by Koike)
 - < 5% accuracy for optical potential depth
 - Width: directly measurable down to ~ 1 keV
 - X-ray yield gives additional (indirect) information on absorption potential.

Expected X-ray spectrum

shift & width 0 keV

Expected X-ray spectrum(2)

shift & width 4 keV

Summary

- We propose to measure Ξ -atomic X rays
 - To determine Ξ -A optical potential
 - First of the series of experiments
 - Aiming to establish the method
- X-ray yield: ~2500
- Precision of X-ray energy ~ 0.05 keV
 - Good accuracy for expected energy shift (~1 keV)
 - Width: measurable down to ~ 1 keV, X-ray yield gives additional information on imaginary part.
- Future experiments will be planned based on the results of this experiment.

Backup slides

Summary of the experiment

• Produce Ξ^- by the (K-,K+) reaction, make it stop in a Fe target, and measure X rays from Ξ^- atom.

- Physics:
 - Ξ-nucleus interaction (optical potential)
 - Real part shift of X-ray energy (up to ~10 keV)
 Imaginary part width, yield
- Sensitivity
 - X-ray energy shift: ~0.05 keV
 - \rightarrow Good for expected shift of O(1keV)
 - Width: directly measurable down to ~ 1keV

Yield estimation

 $\mathsf{Y=N}_{\mathsf{K}} \mathsf{x} \ \sigma_{\Xi} \mathsf{x} \ \mathsf{t} \ \mathsf{x} \ \Omega_{\mathsf{K}} \mathsf{x} \ \varepsilon_{\mathsf{K}} \mathsf{x} \ \mathsf{R}_{\Xi} \mathsf{x} \ \mathsf{R}_{\mathsf{X}} \mathsf{x} \ (1-\eta_{\mathsf{X}}) \mathsf{x} \ \varepsilon_{\mathsf{X}} \mathsf{x} \ \varepsilon_{\mathsf{o}}$

- Beam: N_{K} (total number of K-) = 1.0×10^{12}
- Target:
 - σ_Ξ: (differential) cross section = 180 µb/sr Taken from Iljima et al. [NPA 546 (1992) 588-606]
 - t: target thickness (particles/cm²) = 2.6×10^{23}
 - R_{Ξ} : stopping probability of Ξ in the target = 20% (according to a GEANT4 simulation)
 - R_X: branching ratio of X-ray emission = 10% (estimated by Koike)
 - η_X : probability of self X-ray absorption in the target = 58% (GEANT4 simulation: mean free path for 284 keV X-ray is ~8 mm)

- K+ spectrometer
 - $\Omega_{\rm K}$: acceptance = 0.2 sr
 - ε_K: detection efficiency = 0.51
 (taken from the proposal of BNL-AGS E964)
- X-ray detection
 - $\varepsilon_X: X-ray \text{ detection efficiency} = 8\%$ [16% (GEANT4 simulation) x 0.5 (in-beam live time)]
- Others
 - ε_{o} : overall efficiency (DAQ, trigger, etc.) = 0.8

X-ray background

- Estimation based on E419
- E419: 8 x 10⁻⁵ counts/keV/(π⁺,K⁺), around 284 keV
 - X-ray detection efficiency: x4
 - Other effect: x2 (considering different reaction)
 - → ~2400 counts/keV
- Continuous BG is OK
- Line background might be a problem, though unlikely.
 - there seem no strong lines in this energy from normal nuclei around A=50.
 - Completely unknown for (single) hypernuclei
 - Even weak lines may deform the peak shape

Expected X-ray spectrum

(b) (6,5) → (5,4) A 1800 1600 1600 1200 600 400 shift,width=0keV 200 220 240 260 280 300 320 340 360 Energy (keV)

