Dimuon Measurement with Polarized Beam at J-PARC

NP08 in Mito
March 6th, 2008
Yuji Goto (RIKEN/RBRC)
Outline

• Origin of the nucleon spin 1/2
 – introduction
 • history
 – Drell-Yan measurement
 • unpolarized measurement → polarized measurement
 – quark spin, gluon spin, and orbital angular momentum of quark and gluon
 • longitudinal and transverse spin measurements

• Polarized proton acceleration at J-PARC
J-PARC proposals

• P04: measurement of high-mass dimuon production at the 50-GeV proton synchrotron
 – spokespersons: Jen-Chieh Peng (UIUC) and Shinya Sawadas (KEK)
 – including polarized physics program, but not seriously discussed
 – “deferred”

• P24: polarized proton acceleration at J-PARC
 – contact persons: Yuji Goto (RIKEN) and Hikaru Sato (KEK)
 – collaboration: ANL, BNL, UIUC, KEK, Kyoto Univ., LANL, RCNP, RIKEN, RBRC, Rikkyo Univ., TokyoTech, Tokyo Univ. of Science, Yamagata Univ.
 – polarized Drell-Yan included as a physics case
 – “no decision”

• Next proposal for the polarized physics program
 – to be submitted
Origin of the nucleon spin $1/2$?

\[\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta g + L \]

- EMC experiment at CERN
 J. Ashman et al., NPB 328, 1 (1989).
 - total quark spin constitutes a small fraction of the nucleon spin
 \[\Delta \Sigma = 12 \pm 9(\text{stat}) \pm 14(\text{syst})\% \]
 “proton spin crisis”
 - integration in $x = 0 \sim 1$ makes uncertainty
 - more data to cover wider x region with more precise data necessary
 - SLAC/CERN/DESY/JLAB experiments
 \[\Delta \Sigma \sim 20\% \]

- Gluon spin contribution?
 longitundinally polarized measurements
 - scaling violation in polarized DIS
 - success of the evolution equation of the perturbative QCD
 - limited sensitivity due to a limited range of Q^2
 - semi-inclusive polarized DIS
 - polarized hadron collision

- Orbital angular momentum?
 transversely polarized measurements
Gluon spin contribution

- A_{LL} in neutral pion production
 - mid-rapidity at RHIC, $\sqrt{s} = 200$ GeV

 \[A_{LL} = [\omega_{gg}] \Delta g \Delta g + [\omega_{gq}] \Delta g + [\omega_{qq}] \Delta q \Delta q \]

 \[\Delta G = 0.4 \text{ at } Q^2 = 1(\text{GeV}/c)^2 \]

 \[\Delta G = 0.1 \text{ at } Q^2 = 1(\text{GeV}/c)^2 \]

 GRSV-std scenario, $\Delta G = 0.4$ at $Q^2 = 1(\text{GeV}/c)^2$, excluded by data on more than 3-sigma level

March 6, 2008

NP08 in Mito
Flavor-sorted quark polarization

- Weak boson production
 - RHIC spin
 - $\sqrt{s} = 500$ GeV
 - 2009 –
 - parity-violating asymmetry A_L
 \[A_L^{W^+} = \frac{\Delta u(x_a)\bar{d}(x_b) - \Delta \bar{d}(x_a)u(x_b)}{u(x_a)\bar{d}(x_b) + \bar{d}(x_a)u(x_b)} \]
 - reduction of uncertainties to determine the quark spin contribution $\Delta \Sigma$ and gluon spin contribution ΔG to the proton spin
Transverse single-spin asymmetry (SSA)

- Link to orbital angular momentum in the nucleon
 - forward rapidity
 - Fermilab E704, $\sqrt{s} = 20$ GeV
 - RHIC, $\sqrt{s} = 200$ GeV

explained by many undetermined
distribution and fragmentation
functions: transversity, Sivers function,
Collins function
Drell-Yan experiment

- The simplest process in hadron-hadron reactions
 - no QCD final-state effect
 - no polarized Drell-Yan experiment done yet
 - flavor asymmetry of the sea-quark distributions
 - unpolarized and longitudinally-polarized measurements
 - orbital angular momentum in the nucleon
 - Sivers effect (no Collins effect)
 - transversity distribution function, etc.

- Why at J-PARC?
 - polarized beam feasible in discussions with J-PARC and BNL accelerator physicists
 - high intensity/luminosity for small Drell-Yan cross section
Flavor asymmetry of sea-quark distribution

- Fermilab E866
 \[\frac{\sigma^{pd}}{2\sigma^{pp}} \sim \frac{1}{2} \left[1 + \frac{\bar{d}(x_2)}{\bar{u}(x_2)} \right] \]

- Possible origins
 - meson-cloud model
 - virtual meson-baryon state
 \[p \rightarrow p \pi^0, n \pi^+, \Delta \pi \]
 - chiral quark model
 - instanton model
 - chiral quark soliton model

- Is \(\pi^+ \) the origin of \(\bar{d} \)-quark excess in the proton?

\[\int_{0.015}^{0.35} dx [\bar{d}(x) - \bar{u}(x)] = 0.0803 \pm 0.011 \]
\[\int_{0}^{1} dx [\bar{d}(x) - \bar{u}(x)] = 0.118 \pm 0.012 \]
Polarized Drell-Yan experiment at J-PARC

- Longitudinally-polarized measurement
 - A_{LL} measurement
 - flavor asymmetry of sea-quark polarization

120-day run
75% polarization for a 5×10^{11} protons/spill polarized solid NH3 target, 75% hydrogen polarization and 0.15 dilution factor
Flavor asymmetry of sea-quark polarization

- Polarized Drell-Yan experiment at J-PARC
 - $x = 0.25 - 0.5$
- W^\pm production at RHIC
 - $x = 0.05 - 0.1$

Reduction of uncertainties to determine the quark spin contribution $\Delta \Sigma$ and gluon spin contribution ΔG to the proton spin.

March 6, 2008

NP08 in Mito
Polarized Drell-Yan experiment at J-PARC

- Orbital angular momentum
 - in hadron-hadron reaction, no direct link between measurement and theory (yet)
 - but, any partonic transverse motion and correlation should be related
 - Sivers effect / higher-twist effect
- SSA \((A_N)\) measurement
 - Sivers effect and higher-twist effect provide the same description of SSA on Drell-Yan and semi-inclusive DIS at moderate \(q_T\): \(\Lambda_{QCD} << q_T << Q\)
 - Sivers function in Drell-Yan should have a sign opposite to that in DIS
 - sensitive QCD test between e+p data and p+p data

1000 fb-1 (120-day run), 75% polarization, no dilution factor
Theory calculation by Ji, Qiu, Vogelsang and Yuan based on Sivers function fit of HERMES data
Polarized Drell-Yan experiment at J-PARC

- A_{TT} measurement
 - $h_1(x)$: transversity
 - remaining leading-order distribution function of the nucleon
 \[
 A_{TT} = \hat{a}_{TT} \cdot \frac{\sum_{q} e_{q}^2 (\bar{h}_{1q}(x_1)h_{1q}(x_2) + (1 \leftrightarrow 2))}{\sum_{q} e_{q}^2 (\bar{r}_{1q}(x_1)r_{1q}(x_2) + (1 \leftrightarrow 2))}
 \]
 \[
 \hat{a}_{TT} = \frac{\sin^2 \theta \cos(2\phi - \phi_S - \phi_{S_2})}{1 + \cos^2 \theta}
 \]

- SSA measurement, $\sin(\phi + \phi_S)$ term
 - $h_1(x)$: transversity
 - $h_{1\perp}^{(1)}(x)$: Boer-Mulders function (1st moment of)
 \[
 \hat{A} = -\frac{1}{2} \frac{\sum_{q} e_{q}^2 (\bar{h}_{1q}^{\perp(1)}(x_1)h_{1q}(x_2) + (1 \leftrightarrow 2))}{\sum_{q} e_{q}^2 (\bar{r}_{1q}(x_1)\bar{f}_{1q}(x_2) + (1 \leftrightarrow 2))}
 \]
Polarized proton acceleration at AGS/RHIC

- Proposed scheme for the polarized proton acceleration at J-PARC is based on the successful experience of accelerating polarized protons to 25 GeV at BNL AGS.
Polarized proton acceleration at J-PARC

March 6, 2008

March 6, 2008
Accelerating polarized protons in the MR

- AGS 25% superconducting helical snake

helical dipole coil

correction solenoid and dipoles

measured twist angle 2 deg/cm in the middle ~4 deg/cm at ends
Accelerating polarized protons in the MR

• Possible location of partial helical snake magnets in the MR
Summary

• Polarized Drell-Yan experiment with dimuon measurement using polarized proton beam at J-PARC has a rich physics programs
 – flavor asymmetry of sea-quark polarization → higher precision for $\Delta \Sigma$ and ΔG
 – SSA measurements for Sivers and higher-twist effects and transversity → link to orbital-angular momentum

• We propose to make the J-PARC facility allow acceleration of polarized proton beams to 30-50 GeV
 – feasible in discussion with J-PARC and BNL accelerator physicists
 – technically, there is no showstopper
Backup slides
Gluon spin contribution

- **PHENIX** A_{LL} of π^0
 - GRSV-std scenario, $\Delta G = 0.4$ at $Q^2 = 1\text{(GeV/c)}^2$, excluded by data on more than 3-sigma level, $\chi^2(\text{std}) - \chi^2_{\text{min}} > 9$
 - only experimental statistical uncertainties included (the effect of systematic uncertainties expected to be small in the final results)
 - theoretical uncertainties not included

Calc. by W. Vogelsang and M. Stratmann

[Diagram showing chi-squared distribution with curves for different scenarios: ΔG_{GRSV}, $\Delta G = 0$, $\Delta G = G_{\text{GRSV}}$, and $\chi^2(\text{std}) - \chi^2_{\text{min}} > 9$.]

Run5: hep-ex-0704.3599
Run6: Preliminary
Distribution and fragmentation functions

• Transversity distribution function
 \[\delta q(x) = h_{1T}(x) \]
 – distribution of the transverse-spin of a parton inside the transversely polarized proton

• Sivers distribution function
 \[f_{1T}^{\perp}(x, p_T^2) \]
 – correlation between the transverse-spin of the proton and the transverse-momentum of an unpolarized parton inside the proton \((p_T^2) \)

• Collins fragmentation function
 \[H_{1}^{\perp}(z, k_T^2) \]
 – correlation between the transverse spin of a fragmenting quark and the transverse momentum of the outgoing hadron relative to the quark \((k_T^2) \)
Dimuon experiment at J-PARC (P04)

- based on the Fermilab spectrometer for 800 GeV
- length to be reduced but the aperture to be increased
- two vertically bending magnets with p_T kick of 2.5 GeV/c and 0.5 GeV/c
- tracking by three stations of MWPC and drift chambers
- muon id and tracking

tapered copper beam dump and Cu/C absorbers placed within the first magnet
Dimuon experiment at J-PARC (P04)

- Unpolarized measurement
 - with proton and deuterium targets
Unpolarized Drell-Yan experiment at J-PARC

- Boer-Mulders function $h_1^\perp(x, k_T^2)$

 - angular distribution of unpolarized Drell-Yan
 $\left(\frac{1}{\sigma}\right)\left(\frac{d\sigma}{d\Omega}\right) = \left[\frac{3}{4\pi}\right]\left[1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{\nu}{2} \sin^2 \theta \cos 2\phi\right]$

 - Lam-Tung relation reflect the spin-1/2 nature of quarks
 $1 - \lambda = 2\nu$
 $\nu \neq 0, 1 - \lambda \neq 2\nu$

 - violation of the Lam-Tung relation suggests non-perturbative origin

 - correlation between transverse quark spin and quark transverse momentum

With Boer-Mulders function h_1^\perp:

$\nu (\pi^- W \rightarrow \mu^- \mu^+ X) \sim \text{valence } h_1^\perp(\pi^-)$
$\nu (pd \rightarrow \mu^- \mu^+ X) \sim \text{valence } h_1^\perp(p)$
$\nu (pd \rightarrow \mu^- \mu^+ X) \sim \text{sea } h_1^\perp(p)$

hep-ex/0609005
Physics at 30 GeV

- **J/ψ**
 - gluon fusion or quark-pair annihilation
 - quark-pair annihilation dominant
 - must be confirmed experimentally…
 - similar physics topics as Drell-Yan process

Calculations by color-evaporation model
Physics at 30 GeV

- SSA measurement of open charm production
 - no single-spin transfer to the final state
 - sensitive to initial state effect: Sivers effect
 - collider energies: gluon-fusion dominant
 - sensitive to gluon Sivers effect
 - fixed-target energies: quark-pair annihilation dominant
 - sensitive to quark Sivers effect

Polarized proton acceleration

• How to keep the polarization given by the polarized proton source
 – depolarizing resonance
 • imperfection resonance
 – magnet errors and misalignments
 • intrinsic resonance
 – vertical focusing field
 – weaken the resonance
 • fast tune jump
 • harmonic orbit correction
 – intensify the resonance and flip the spin
 • rf dipole
 • snake magnet

• How to monitor the polarization
 – polarimeters
Modes of operation

• Operation mode of the J-PARC MR should be:
 – 50 GeV maximum energy
 – 10^{12} proton/spill ($\sim 10^{36}\text{cm}^{-2}\text{s}^{-1}$ luminosity with a $\sim 5\%$ interaction target)
 • 8 bunches
 • 2×10^{11} proton/bunch at RCS
 – 0.5 s spill length (working assumption)
 – 80% polarization
 – $10\pi\ \text{mm}\cdot\text{mrad}$ normalized 95% emittance and 0.3 eVs longitudinal emittance
High-intensity polarized H^- source

- OPPIS parameters required:
 - 0.16 mA peak H^- ion current in 500 μsec pulse
 - 5×10^{11} H^- ion/pulse
 - 50Hz repetition rate
 - 1.0π mm·mrad normalized emittance
 - 35 keV beam energy
 - 85% polarization
High-intensity polarized H^- source

- RHIC OPPIS
 - built at KEK and upgraded at TRIUMF
 - 0.5-1.0 mA (max. 1.6 mA) H^- ion current in 400 μsec pulse
 - 1.2-2.4\times10^{12} H^- ion/pulse
 - 7 Hz max. repetition rate
 - 1 Hz routine repetition
 - 82-85% polarization
High-intensity polarized H\(^-\) source

- **Issues**
 - where to locate the polarized H\(^-\) source
 - how to merge the polarized beam to the existing beam line
 - may require RFQ
 - maintenance of the laser system
From source to RCS

• Polarimeter
 – at the end of the linac
 – proton-Carbon inclusive polarimeter similar to that at BNL

• Stripping foil
 – 300-500 μg/cm2 stripping foil for injection to RCS
 – need to be replaced by 100 μg/cm2 foil to have better dp/p
Accelerating polarized protons in the RCS

- Kinetic energy from 0.18 GeV to 3 GeV
 - $G\gamma = 2.2 \sim 7.5$
 - betatron tune $\nu_y = 6.35$

by Mei Bai (BNL)
Accelerating polarized protons in the RCS

- 5 imperfection resonances
 - \(G_\gamma = 3, 4, 5, 6, 7 \)
 - corrected by harmonic orbit correction
- 4 intrinsic resonances
 - betatron tune \(\nu_y = 6.35 \)
 - \(G_\gamma = 2.65 (9-\nu_y), 3.35 (-3+\nu_y), 5.65 (12-\nu_y), 6.35 (0+\nu_y) \)
 - first small resonance is corrected by fast tune jump
 - latter three strong resonances are completely (> 99%) spin-flipped by a rf dipole
 - 20 Gm vertical rf dipole
 - smaller size of beam (comparing to 7cm painting beam) required: operational issue
Accelerating polarized protons in the RCS

• Issues
 – where to locate the rf dipole
 – design of the rf dipole
 – beam monitor system to cover a wide dynamic range between high-intensity unpolarized beam (4×10^{13}/bunch) and polarized beam (1.5×10^{11}/bunch)
 • position monitor necessary to calculate the magnetic field error and correct it by the harmonic orbit correction
 – spin tracking to be done
Accelerating polarized protons in the MR

- Kinetic energy from 3 GeV to 50 GeV
 - $G_\gamma = 7.5 \sim 97.5$
 - betatron tune $\nu_x = 22.339, \nu_y = 20.270$
Accelerating polarized protons in the MR

- Two superconducting 30% partial helical Siberian snakes separated by 120 degree installed in two of the three straight sections:
 - avoid all vertical depolarizing resonances
- Two quadrupole doublets
 - to compensate perturbation of the lattice by the snakes at low energies

![Graph](image)
full spin flip at all imperfection and strong intrinsic resonances using partial Siberian snake and rf dipole at AGS
Accelerating polarized protons in the MR

- Spin tracking
 - $\nu_x = 22.128$, $\nu_y = 20.960$
 - average of 12 particles on an ellipse of 8π mm mrad

by A.U. Luccio (BNL)
Primary beam extraction

• No serious issues

• Issues
 – operational issues
 • tune change for the extraction
 • vertical bend of the beam line
 – beam profile monitor system for the stability of beam intensity, position, and spot size to provide a systematical control of the experimental data quality
 – spin rotator magnet necessary to manipulate a direction of beam polarization
Proton-carbon elastic-scattering polarimeter

• Requirements
 – known analyzing power A_N
 – small systematic error
 – quick measurement (~1 min)

• AGS/RHIC pC CNI polarimeter
 – elastic scattering in the coulomb-nuclear interference region
 – micro-ribbon carbon target in the circulating beam
 – detecting recoil carbon nucleus
 • arrival time from time-zero to Si sensors

WFD image provided by K. Kurita (Rikkyo)
Proton-carbon elastic-scattering polarimeter

- Proton-carbon CNI polarimeter at J-PARC
 - no time-zero information
 - coincidence measurement between the recoiled carbons and the forward going protons with the extracted beam
 - economical solution which provides a quick turn-around to optimize machine parameters to achieve maximum polarization
Absolute polarimeter

- Proton-proton and proton-carbon elastic scattering at 31.2 GeV of the RHIC beam
 - measured analyzing power data at 31.2 GeV of the RHIC beam
 - available for calibration of absolute polarimeter of the main ring (gas jet) and/or extracted beam (solid target)
Cost for polarized proton acceleration

- Rough estimation based on the cost at BNL
 - 200 million yen high-intensity polarized H⁻ source
 - OPPIS / RFQ / polarimeter
 - 50 million yen from source to RCS
 - proton-carbon inclusive polarimeter / stripping foil upgrade
 - 100 million yen acceleration at RCS
 - rf dipole magnet / beam monitor system upgrade
 - 500 million yen acceleration at MR
 - two superconducting 30% partial helical Siberian snakes / two quadrupole doublets
 - 250 million yen primary beam extraction
 - beam profile monitor system / spin rotators
 - 100 million yen proton-carbon CNI polarimeter
 - 100 – 300 million yen absolute polarimeter
 - gas jet in the main ring and/or solid target with the extracted beam
- Total 1,300 – 1,500 million yen
Polarized target

- Michigan polarized target
 - existing at KEK
 - target thickness \(\sim 3 \text{ cm} \) (1% target)
 - maybe operational with \(10^{11} \) ppp (luminosity \(\sim 10^{34} \text{ cm}^{-2}\text{s}^{-1} \))