Four-, Five-, and Six-Body Calculations of Double Strangeness s-Shell Hypernuclei

H. Nemura

Institute of Particle and Nuclear Studies, KEK

This talk is based on the work nucl-th/0407033
in collaboration with
S. Shinmura (Gifu University)
Y. Akaishi (Nihon University)

Khin Swe Myint (Mandalay University)

"NAGARA" Event

${ }_{4}^{6} \mathrm{He}$

$\Delta B_{\Lambda \Lambda}=1.01 \pm 0.20_{-0.11}^{+0.18} \mathrm{MeV}$

(Top View)

Introduction:

${ }_{\Lambda \Lambda}{ }^{6} \mathrm{He}$: A door to the multistrangeness world
$\Delta B_{\Lambda \Lambda} \sim 4-5 \mathrm{MeV}$ (Old data) [Prowse, PRL 17, 782 (1966)]

- $\Delta B_{\Lambda \Lambda} \sim 1 \mathrm{MeV}$ (Nagara event) [Takahashi et al., PRL 87, 212502 (2001)]
${ }_{\Lambda \Lambda}{ }^{4} \mathrm{H}$: Is there a bound state?
Earlier theoretical predictions $\rightarrow \quad$ positive
* Nakaichi-Maeda and Akaishi, PTP 84, 1025 (1990).
© H. N. et al., PTP 103, 929 (2000).
- BNL-AGS E906 experiment; formation of ${ }_{\Lambda \Lambda}{ }^{4} \mathrm{H}$ (?)
* Ahn et al, PRL 87, 132504 (2001).
- A theoretical study of weak decay modes from ${ }_{\Lambda \Lambda}{ }^{4} \mathrm{H} \rightarrow$ negative
* Kumagai-Fuse and Okabe, PRC 66, 014003 (2002).
*Faddeev-Yakubovsky search for ${ }_{\Lambda \Lambda}{ }^{4} \mathrm{H}$ (based on Nagara datum)
*ilikhin and Gal, PRL 89, 172502 (2002). \rightarrow negative? (but positive on $d \Lambda \Lambda$ model)

Introduction:

Faddeev-Yakubovsky search for ${ }_{\Lambda \Lambda}{ }^{4} \mathrm{H}$

- Filikhin and Gal, PRL 89, 172502 (2002). \rightarrow negative? (but positive on $d \Lambda \Lambda$ model)
- Stochastic variational search for ${ }_{\Lambda \Lambda}{ }^{4} \mathrm{H}$
* The result strongly depends on the choice of ΛN interaction.
*What is the problem on theoretical search for ${ }_{\Lambda \Lambda}{ }^{4} \mathrm{H}$?
*Our publicatioin concluded that " A theoretical search for ${ }_{\Lambda \Lambda}{ }^{4} \mathrm{H}$ is still an open subject," because the " ${ }^{3} S_{1} \Lambda N$ interaction has to be determined very carefully, since $B_{\Lambda \Lambda}$ is sensitive to the ${ }^{3} S_{1}$ channel of the ΛN interaction."
How to determine the ${ }^{3} S_{1} \Lambda N$ interaction?

Introduction: S=-2 hypernucleus

A key issue of $S=-2$ study: The total binding energies of the $S=-2$ hypernuclei strongly depend on the strength of the ΛN interaction than the strength of the $\Lambda \Lambda$ interaction.

* For example,

$$
\Lambda \Lambda{ }^{4} \mathrm{H} \sim p n \Lambda \Lambda
$$

* Number of ΛN pairs: 4 * Number of $\Lambda \Lambda$ pairs: 1

Introduction:

How to determine the ${ }^{3} S_{1} \Lambda N$ interaction?
A detailed analysis concerning Λp scattering has not yet become available.
© Experimental B_{Λ} values for ${ }_{\Lambda}{ }^{4} \mathrm{H}^{*},{ }_{\Lambda}{ }^{4} \mathrm{He}^{*}$ and ${ }_{\Lambda}{ }^{5} \mathrm{He}$ would give useful information for pinning down the ${ }^{3} S_{1} \Lambda N$ interaction.

* However, there is a long standing problem on s-shell Λ hypernuclei: anomalously small binding of ${ }_{\Lambda}{ }^{5} \mathrm{He}$.
*Recently, Akaishi et al. successfully resolved the anomaly by explicitly taking account of $\Lambda N-\Sigma N$ coupling.

Akaishi et al., PRL 84, 3539 (2000).

Anonariousiy smain olnaing ot
${ }^{5}$ He

* Why is the ${ }_{\Lambda}{ }^{5} \mathrm{He}$ anomaly important for the study of $S=-2$ hypernuclei?
The algebraic structure of $\sigma \cdot \sigma$ part of ΛN potential for $S=-2$ hypernuclei is same as that for ${ }_{\Lambda}^{5} \mathrm{He}$.
$S=-1$ hypernuclei

$$
\left\langle\sum_{i=1}^{N} V\left(N_{i} \Lambda\right)\right\rangle
$$

${ }_{4}^{3} \mathrm{H}$
${ }_{\Lambda}^{4} \mathrm{H},{ }_{\Lambda}^{4} \mathrm{He}$
$\frac{1}{2} \bar{v}_{t}+\frac{3}{2} \bar{v}_{s}$
${ }_{\Lambda}^{4} \mathrm{H}^{*},{ }_{\Lambda}^{4} \mathrm{He}$ *
$\frac{3}{2} \bar{v}_{t}+\frac{3}{2} \bar{v}_{s}$
${ }_{1}^{5} \mathrm{He}$
$S=-2$ hypernuclei

$$
\left\langle\sum_{i=1}^{N} \sum_{j=1}^{Y} V\left(N_{i} \Lambda_{j}\right)\right\rangle\left\langle V\left(\Lambda_{1} \Lambda_{2}\right)\right\rangle
$$

${ }_{14}{ }_{4} \mathrm{H}$
${ }^{5} \mathrm{H}$, $3 \bar{v}_{t}+\bar{v}_{s}$
${ }_{\Delta \Lambda_{4}^{6}} \mathrm{He}$ $6 \bar{v}_{t}+2 \bar{v}_{s}$ $\overline{u_{s}}$

Anomaiousiy smailioinding ot

*There is no way to $S=-2$ study on the way avoinding ${ }_{\Lambda}^{5} \mathrm{He}$ anomaly.

Exotic baryon admixture

The purpose of this work

Systematic study for the complete set of s-shell Λ hypernuclei with the strangeness $S=-1$ and -2 in a framework of full-coupled channel formulation.

* Theoretical search for ${ }_{\Lambda \Lambda}^{4} \mathrm{H}$.
* Fully baryon mixing of ${ }_{\Lambda \Lambda}^{5} \mathrm{H}$ and ${ }_{\Lambda \Lambda}{ }^{5} \mathrm{He}$.
. ${ }_{1}^{3} \mathrm{H} \quad \sim N N \Lambda+N N \Sigma$
${ }_{\Lambda}{ }^{4} \mathrm{H},{ }_{\Lambda}^{4} \mathrm{He} \sim N N N \Lambda+N N N \Sigma$
- ${ }_{\Lambda}^{5} \mathrm{He} \quad \sim N N N N \Lambda+N N N N \Sigma$
${ }_{\Lambda \Lambda}{ }^{4} \mathrm{H} \quad \sim N N \Lambda \Lambda+N N \Lambda \Sigma+N N N \Xi+N N \Sigma \Sigma$
- ${ }_{\Lambda \Lambda}^{5} \mathrm{H},{ }_{\wedge \Lambda}^{5} \mathrm{He} \sim N N N \Lambda \Lambda+N N N \Lambda \Sigma+N N N N \Xi+N N N \Sigma \Sigma$
* ${ }_{\Lambda \Lambda}{ }^{6} \mathrm{He} \sim N N N N \Lambda \Lambda+N N N N \Lambda \Sigma+N N N N N E+N N N N \Sigma \Sigma$

NN, YN and YY potentials

$\$ N$ interaction: Minnesota potential
© The $N N$ interaction reproduces the low energy $N N$ scattering data, and also reproduces reasonably well both the binding energies and sizes of ${ }^{2} \mathrm{H},{ }^{3} \mathrm{H},{ }^{3} \mathrm{He}$, and ${ }^{4} \mathrm{He}$.
(1) YN interaction: D2' potential
*The $Y N$ interaction reproduces the experimental B_{Λ} of $A=3-5$ hypernuclei; Free from the ${ }_{\Lambda}{ }^{5} \mathrm{He}$ anomaly.

* $Y Y$ interaction: Simulating Nijmegen model (ND or NF) *Fully coupled channel; ${ }^{1} S_{0} \quad{ }^{3} S_{1}$ hard-core radius
$I=0$
$\Lambda \Lambda-N \Xi-\Sigma \Sigma$
$N \Xi$
ND: $r_{\mathrm{c}}=(0.56,0.45) \mathrm{fm} \quad I=1 \quad N \Xi-\Lambda \Sigma \quad N \Xi-\Lambda \Sigma-\Sigma \Sigma$ NIL. $(\cap 52$ (5?) fm

T-9

Ab initio calculation with stochastic variational method

- The variational trial function must be flexible enough to incorporate both
- Explicit Σ degrees of freedom and
- Higher orbital angular momenta.
* $\Psi=\sum_{i} c_{i} \Phi_{J M T M T}\left(\boldsymbol{x} ; \mathbf{A}_{i}, u_{i}\right)$
- $\Phi_{\text {JMIMI }_{I}}\left(\boldsymbol{x}, \mathbf{A}_{i}, u_{i}\right)$
$=\mathcal{A}\left\{G\left(\boldsymbol{x} ; \mathbf{A}_{i}\right)\left[\theta_{(k)_{i}}\left(\boldsymbol{x} ; u_{i}\right) \times \chi_{\Psi_{i}}\right]_{J M} \eta_{M_{I}}\right\}$

Complete six-body treatment

Ab initio calculation with SVM

\$ SVM is capable of handling the massive calculation.
Desired computational power

Ab initio calculation with stochastic variational method
 - An example of isospin function

Ab initio calculation with stochastic variational method

- An example of isospin function
- ${ }_{\Lambda \Lambda}{ }^{6} \mathrm{He},(J=0, I=0) ; 16$ channels

Ab initio calculation with

 stochastic variational method- An example of isospin function
${ }_{\wedge \Lambda}{ }^{6} \mathrm{He},(J=0, I=0) ; 16$ channels
$\left[\left[\left[[N N]_{0} N\right]_{1 / 2} N\right]_{0} \Lambda \Lambda\right]_{00}, \quad\left[\left[\left[[N N]_{1} N\right]_{1 / 2} N\right]_{0} \Lambda \Lambda\right]_{00}$,
$\left.\left[\left[\left[\left[[N N]_{0} N\right]_{1 / 2} N\right]_{1} \Sigma\right]_{0} \Lambda\right]_{00}, \cup\left[\left[\left[[N N]_{1} N\right]_{1 / 2} N\right]_{1} \Sigma\right]_{0} \Lambda\right]_{\mathrm{oo}}$,
$\left[\left[\left[\left[[N N]_{1} N\right]_{3 / 2} N\right]_{1} \Sigma\right]_{0} \Lambda\right]_{00}$,
$\left.\left[\left[\left[[N N]_{0} N\right]_{1 / 2} N\right]_{0} \Sigma\right]_{1} \Sigma\right]_{00}, \quad\left[\left[\left[\left[[N N]_{1} N\right]_{1 / 2} N\right]_{0} \Sigma\right]_{1} \Sigma\right]_{00}$,
$\eta_{00}=\left[\left[\left[\left[[N N]_{0} N\right]_{1 / 2} N\right]_{1} \Sigma\right]_{1} \Sigma\right]_{00}, \quad\left[\left[\left[\left[[N N]_{1} N\right]_{1 / 2} N\right]_{1} \Sigma\right]_{1} \Sigma\right]_{00}$,
$\left[\left[\left[\left[[N N]_{1} N\right]_{3 / 2} N\right]_{1} \Sigma\right]_{1} \Sigma\right]_{00}, \quad\left[\left[\left[\left[[N N]_{1} N\right]_{3 / 2} N\right]_{2} \Sigma\right]_{1} \Sigma\right]_{00}$,
$\left.\left[\left[\left[\left[[N N]_{0} N\right]_{1 / 2} N\right]_{0} N\right]_{1 / 2} \Xi\right]_{\mathrm{oo}},\left[\left[\left[[\mid N N]_{1} N\right]_{1 / 2} N\right]_{0} N\right]_{1 / 2} \Xi\right]_{00}$,
$\left.\left.\left[\left[\left[[N N]_{0} N\right]_{1 / 2} N\right]_{1} N\right]_{1 / 2} \Xi\right]_{00}, \quad\left[\left[\left[[N N]_{1} N\right]_{1 / 2} N\right]_{1} N\right]_{1 / 2} \Xi\right]_{00}$,
$\mid\left[\mid\left[\left.\left.|N N|_{1} N\right|_{2,2} N\right|_{, ~},\left.\left.N\right|_{1, n} \Xi\right|_{\ldots n}\right.\right.$,

Results

Results

Results

Results

- Using the $\mathrm{ND}_{S} Y Y$ potential, we obtain

$$
\Delta B_{\Lambda \Lambda}{ }^{\text {(cale) }}\left({ }_{\Lambda \Lambda}{ }^{6} \mathrm{He}\right)=B_{\Lambda \Lambda}{ }^{\text {(cal) })}\left({ }_{\Lambda \Lambda}^{6} \mathrm{He}\right)-2 B_{\Lambda}{ }^{\text {(cale) }}\left({ }_{\Lambda}^{5} \mathrm{He}\right)
$$

$$
=1.55 \mathrm{MeV} \text {, }
$$

which is slightly larger than the experimental value,

$$
\Delta B_{\Lambda \Lambda}{ }^{(\exp)}\left({ }_{\Lambda \Lambda}{ }^{6} \mathrm{He}\right)=1.01 \pm 0.20^{+0.18}-0.11 \mathrm{MeV} .
$$

© On the other hand, using $\mathrm{NF}_{S} Y Y$ potential,

$$
\Delta B_{\Lambda \Lambda}{ }^{\text {(call) }}\left({ }_{\Lambda \Lambda}{ }^{6} \mathrm{He}\right)=1.12 \mathrm{MeV},
$$

is fairly in good agreement with the experiment.

* We have also calculated the hypernuclei using a modified $\mathrm{ND}_{S}\left(\mathrm{mND}_{S}\right)$ potential; the strength of the $\Lambda \Lambda$ diagonal part of the mND_{S} is reduced by multiplying by

Results

Results

YY potentials

The $V_{\Lambda \Lambda-\Lambda \Lambda}$ potential:

YY potentials

The $V_{\Lambda \Lambda-N \Xi}$ potential:

YY potentials

The $V_{N \Xi-N \Xi}$ potential:

Baryon mixing in $\wedge_{\Lambda}{ }^{5} \mathrm{H}$

We assume that all of the baryons occupy same ($0 s$) orbit.

$$
\begin{align*}
& H=\left(\begin{array}{cc}
H_{\Lambda \Lambda} & V_{N E-\Lambda \Lambda} \\
V_{\Lambda \Lambda-N E} & H_{N E} \\
V_{\Lambda \Lambda-\Lambda \Sigma} & V_{N E-\Lambda \Sigma}
\end{array}\right. \\
& V_{\Lambda \Lambda-N E}=v_{\Lambda \Lambda-N E} \\
& V_{\Lambda \Lambda-\Lambda \Sigma}=\sum_{i=1}^{N} v_{N_{i} \Lambda-N_{i} \Sigma} \\
& V_{N E-\Lambda \Sigma}=v_{N E-\Lambda \Sigma}
\end{align*}
$$

$$
\left.\begin{array}{c}
V_{\Lambda \Sigma-\Lambda \Lambda} \\
V_{\Lambda \Sigma-N \Xi} \\
H_{\Lambda \Sigma}
\end{array}\right)
$$

$$
\alpha \Xi^{-}
$$

$$
\begin{aligned}
& \Psi\left({ }_{12}^{5} \mathrm{H}\right) \\
& =\sqrt{\frac{1}{3}}\left[\psi_{t} \times\left[\psi_{\left.\Lambda \Sigma^{2}\right]} \|_{S_{1}=}\right] \times \psi_{\Lambda \Sigma^{2}-t}\right. \\
& -\sqrt{\frac{2}{3}}\left[\psi_{h} \times\left[\psi_{\Lambda \Sigma}\right]_{S_{N E}} \mid \times \psi_{\Lambda \Sigma-h}\right. \\
& \text { (for } S_{\Lambda \Sigma}=0 \text { or } 1 \text {) }
\end{aligned}
$$

Baryon mixing in $\wedge_{\Lambda}{ }^{5} \mathrm{H}$

Algebraic factors for each averaged coupling potential of the allowed spin state, v^{s} or v^{t} :

$$
\sqrt{\sqrt{\frac{1}{2}} \bar{v}_{\Lambda \Lambda-N E}^{s}}
$$

$$
\begin{aligned}
& -\sqrt{\frac{3}{4}} \bar{v}_{N \Xi-\Lambda \Sigma}^{s}\left(\text { for } S_{\Lambda \Sigma}=0\right) \\
& \frac{3}{2} \bar{v}_{N E-\Lambda \Sigma}^{t}\left(\text { for } S_{\Lambda \Sigma}=1\right) \\
&
\end{aligned}
$$

$\alpha \Xi^{-}$

Baryon mixing in $\wedge_{\Lambda}{ }^{5} \mathrm{H}$

- Solving the eigenvalue problem,

$$
\operatorname{det}|h-\lambda E|=0,
$$

we have the ground state energy, $E=-11.82 \mathrm{MeV}$
(for the mND_{S}) or $E=-11.82 \mathrm{MeV}$
(for the NF_{S}), and
$N \Xi$ probability,

$$
P_{N \Xi}=3.98 \%
$$

(for the mND_{S}) or

$$
P_{N \Xi}=2.83 \%
$$

(for the NF_{S}).
$h=\left|\begin{array}{ccc}\frac{\left\langle H_{\Lambda \Lambda}\right\rangle}{P_{\Lambda \Lambda}} & \frac{\left\langle V_{N E-\Lambda \Lambda}\right\rangle}{\sqrt{P_{\Lambda \Lambda} P_{N E}}} & \frac{\left\langle V_{\Lambda \Sigma-\Lambda \Lambda}\right\rangle}{\sqrt{P_{\Lambda \Lambda} P_{\Lambda \Sigma}}} \\ \frac{\left\langle V_{\Lambda \Lambda-N E}\right\rangle}{\sqrt{P_{\Lambda \Lambda} P_{N E}}} & \frac{\left\langle H_{N E}\right\rangle}{P_{N E}} & \frac{\left\langle V_{\Lambda \Sigma-N \Sigma}\right\rangle}{\sqrt{P_{N E} P_{\Lambda \Sigma}}} \\ \frac{\left\langle V_{\Lambda \Lambda-\Lambda \Sigma}\right\rangle}{\sqrt{P_{\Lambda \Lambda} P_{\Lambda \Sigma}}} & \frac{\left\langle V_{N E-\Lambda \Sigma}\right\rangle}{\sqrt{P_{N E} P_{\Lambda \Sigma}}} & \frac{\left\langle H_{\Lambda \Sigma}\right\rangle}{P_{\Lambda \Sigma}}\end{array}\right|$,

$$
\begin{aligned}
& =\left(\begin{array}{ccc}
-9.12 & -1.82 & -14.52 \\
-1.82 & 5.02 & -10.37 \\
-14.52 & -10.37 & 92.45
\end{array}\right) \quad\left(\text { for the } \mathrm{mND}_{\mathrm{S}}\right), . \\
& =\left(\begin{array}{ccc}
-6.10 & -20.47 & -14.91 \\
-20.47 & 115.3 & -10.01 \\
-14.91 & -10.01 & 101.6
\end{array}\right) \quad\left(\text { for the } \mathrm{NF}_{\mathrm{S}}\right) .
\end{aligned}
$$

Baryon mixing in $\wedge_{\Lambda}{ }^{5} \mathrm{H}$

Solving the eigenvalue problem of only the first 2×2 subspace, $\operatorname{det}|h-\lambda E|=0$,
we have the ground state energy,
$E=-9.35 \mathrm{MeV}$
(for the mND_{S}) or $E=-9.46 \mathrm{MeV}$
(for the NF_{S}), and $N \Xi$ probability,

$$
P_{N \Xi}=1.57 \%
$$

(for the mND_{S}) or

$$
P_{N \Xi}=2.62 \%
$$

(for the NF_{S}).

Baryon mixing in $\wedge_{\Lambda}{ }^{5} \mathrm{H}$

The $N \Lambda-N \Sigma$ and $N \Xi-\Lambda \Sigma$ potentials enhance the ground state energy,

$$
E=-9.35 \mathrm{MeV}
$$

\downarrow

$$
E=-11.82 \mathrm{MeV},
$$

and also the
$N \Xi$ probability,

$$
\begin{gathered}
P_{N \Xi}=1.57 \% \\
\downarrow \downarrow \\
P_{N \Xi}=3.98 \%,
\end{gathered}
$$

for the mND_{S} potential.

$$
\begin{aligned}
& h=\left|\begin{array}{lll}
\frac{\left\langle H_{\Lambda \Lambda}\right\rangle}{P_{\Lambda \Lambda}} & \frac{\left\langle V_{N E-\Lambda \Lambda}\right\rangle}{\sqrt{P_{\Lambda \Lambda} P_{N I}}} & \frac{\left\langle V_{\Lambda \Sigma-\Lambda \Lambda}\right\rangle}{\sqrt{P_{\Lambda \Lambda} P_{\Lambda \Sigma}}} \\
\frac{\left\langle V_{\Lambda \Lambda-N E}\right\rangle}{\sqrt{P_{\Lambda \Lambda} P_{N E}}} & \frac{\left\langle H_{N E}\right\rangle}{P_{N E}} & \frac{\left\langle V_{\Lambda \Sigma-N \Sigma}\right\rangle}{\sqrt{P_{N I} P_{\Lambda \Sigma}}} \\
\frac{\left\langle V_{\Lambda \Lambda-\Lambda \Sigma}\right\rangle}{} \frac{\left\langle V_{N E-\Lambda \Sigma}\right\rangle}{\sqrt{P_{\Lambda \Lambda} P_{\Lambda \Sigma}}} \frac{\left\langle H_{\Lambda \Sigma}\right\rangle}{\sqrt{P_{N E} P_{\Lambda \Sigma}}} & \frac{\left\langle H^{\prime}\right.}{P_{\Lambda \Sigma}}
\end{array}\right|, \\
& =\left(\begin{array}{ccc}
-9.12 & -1.82 & -14.52 \\
-1.82 & 5.02 & -10.37 \\
-14.52 & -10.37 & 92.45
\end{array}\right) \quad\left(\text { for the } \mathrm{mND}_{\mathrm{s}}\right), . \\
& \text { or } \\
& =\left|\begin{array}{ccc}
-6.10 & -20.47 & -14.91 \\
-20.47 & 115.3 & -10.01 \\
-14.91 & -10.01 & 101.6
\end{array}\right| \quad \text { (for the } \mathrm{NF}_{\mathrm{s}} \text {). }
\end{aligned}
$$

Baryon mixing in $\wedge_{\Lambda}{ }^{5} \mathrm{H}$

The $N \Lambda-N \Sigma$ and $N \Xi-\Lambda \Sigma$ potentials enhance the ground state energy,
$E=-9.46 \mathrm{MeV}$
\downarrow

$$
E=-11.82 \mathrm{MeV},
$$ but hardly enhance the $N \Xi$ probability,

$$
\begin{gathered}
P_{N \Xi}=2.62 \% \\
\downarrow \downarrow \\
P_{N \Xi}=2.83 \%,
\end{gathered}
$$

for the NF_{S} potential.

$$
\begin{aligned}
& h=\left|\begin{array}{lll}
\frac{\left\langle H_{\Lambda \Lambda}\right\rangle}{P_{\Lambda \Lambda}} & \frac{\left\langle V_{N E-\Lambda \Lambda}\right\rangle}{\sqrt{P_{\Lambda \Lambda} P_{N E}}} & \frac{\left\langle V_{\Lambda \Sigma-\Lambda \Lambda}\right\rangle}{\sqrt{P_{\Lambda \Lambda} P_{\Lambda \Sigma}}} \\
\frac{\left\langle V_{\Lambda \Lambda-N E}\right\rangle}{\sqrt{P_{\Lambda \Lambda} P_{N E}}} & \frac{\left\langle H_{N E}\right\rangle}{P_{N E}} & \frac{\left\langle V_{\Lambda \Sigma-N \Sigma}\right\rangle}{\sqrt{P_{N E} P_{\Lambda \Sigma}}} \\
\frac{\left\langle V_{\Lambda \Lambda-\Lambda \Sigma}\right\rangle}{\sqrt{P_{\Lambda \Lambda} P_{\Lambda \Sigma}}} & \frac{\left\langle V_{N E-\Lambda \Sigma}\right\rangle}{\sqrt{P_{N E} P_{\Lambda \Sigma}}} & \frac{\left\langle H_{\Lambda \Sigma}\right\rangle}{P_{\Lambda \Sigma}}
\end{array}\right|, \\
& =\left(\begin{array}{ccc}
-9.12 & -1.82 & -14.52 \\
-1.82 & 5.02 & -10.37 \\
-14.52 & -10.37 & 92.45
\end{array}\right) \quad\left(\text { for } \text { the } \mathrm{mND}_{\mathrm{s}}\right) \text {. . } \\
& \text { or } \\
& =\left(\begin{array}{ccc}
-6.10 & -20.47 & -14.91 \\
-20.47 & 115.3 & -10.01 \\
-14.91 & -10.01 & 101.6
\end{array}\right) \text { (for the } \mathrm{NF}_{\mathrm{s}} \text {). }
\end{aligned}
$$

Summary

* We have performed a systematic study for $S=-2$ hypernuclei $\left({ }_{\Lambda \Lambda}{ }^{4} \mathrm{H},{ }_{\Lambda \Lambda}^{5} \mathrm{H},{ }_{\Lambda \Lambda}^{5} \mathrm{He},{ }_{\Lambda \Lambda}{ }^{6} \mathrm{He}\right)$, in a complete six-body and fully coupled channel treatment. * Using a set of baryon-baryon potentials among the octet baryons which is consistent with all of the experimental binding energies of s-shell (hyper-)nuclei, ${ }_{\Lambda \Lambda}{ }^{4} \mathrm{H}$ has a particle stable bound state. $\rightarrow{ }_{\Lambda \Lambda}{ }^{4} \mathrm{H}$ could exist. - Fully baryon mixing of the ${ }_{\Lambda \Lambda}{ }^{5} \mathrm{H}$ and ${ }_{\Lambda \Lambda}{ }^{5} \mathrm{He}$.

Larger $P_{N E}$ probability has been obtained even for the weaker $\Lambda \Lambda-N \Xi$ potential of the mND_{S}.

The $\Lambda N-\Sigma N$ and $\Xi N-\Lambda \Sigma$ potential play important roles and significantly enhance the ground state en-

In the future study

* The present study is the first attempt to explore the few-body systems with multistrangeness in a fully coupled channel scheme.
Further studies should be made:
- Structure of ${ }_{\Lambda \Lambda}{ }^{4} \mathrm{H}$.
- Structure of ${ }_{\Lambda \Lambda}{ }^{5} \mathrm{H}$ and ${ }_{\Lambda \Lambda}{ }^{5} \mathrm{He}$.
© Charge symmetry breaking between $\Lambda \Lambda{ }^{5} \mathrm{H}$ and ${ }_{\Lambda \Lambda}{ }^{5} \mathrm{He}$.
- Structure of ${ }_{\Lambda \Lambda}{ }^{6} \mathrm{He}$.

The other exotic few-body systems with strangeness.

In the future study

* The other exotic few-body systems with strangeness.

Kaon-nucleus systems.

- Exotic structure of baryon such as Λ (1405).
- Pentaquark.

Relativistic effects should be taken into account.
Semi-relativistic hamiltonian in the center-of-mass system.

$$
H=\sum_{i=1}^{A}\left(\sqrt{m_{i}^{2}+p_{i}^{2}}-m_{i}\right)+\sum_{i<j} V_{i j}, \quad\left(\text { with } \sum_{i=1}^{A} p_{i}=0\right)
$$

* For example, we suppose the ${ }^{3} \mathrm{H}$ of $(0 s)^{3}$, with size parameter b.

$$
\phi=\exp \left\{-\frac{1}{2} b^{2} \sum_{i=1}^{3} r_{i}^{2}\right\}
$$

