Four-, Five-, and Six-Body Calculations of Double Strangeness s-Shell Hypernuclei

H. Nemura Institute of Particle and Nuclear Studies, KEK

This talk is based on the work nucl-th/0407033 in collaboration with S. Shinmura (*Gifu University*) Y. Akaishi (*Nihon University*) Khin Swe Myint (*Mandalay University*)

"NAGARA" Event

$\Delta B_{\Lambda\Lambda} = 1.01 \pm 0.20^{+0.18}_{-0.11} \text{MeV}$

(Top View)

Introduction:

- $\bigoplus_{\Lambda\Lambda}$ ⁶He: A door to the multistrangeness world
 - $\Delta B_{\Lambda\Lambda} \sim 4-5 \text{ MeV}$ (Old data) [Prowse, PRL **17**, 782 (1966)]

 $\Delta B_{\Lambda\Lambda} \sim 1 \text{ MeV}$ (Nagara event) [Takahashi *et al.*, PRL **87**, 212502 (2001)]

- $\bigoplus_{\Lambda\Lambda}{}^{4}$ H: Is there a bound state?
 - ♦ Earlier theoretical predictions → positive
 ♦ Nakaichi-Maeda and Akaishi, PTP 84, 1025 (1990).
 ♦ H. N. *et al.*, PTP 103, 929 (2000).
 - **BNL-AGS E906** experiment; formation of $_{\Lambda\Lambda}{}^{4}$ H (?)

[®] Ahn *et al*, PRL **87**, 132504 (2001).

[®] Kumagai-Fuse and Okabe, PRC **66**, 014003 (2002).

- **The Second Sec**
- Solution Filikhin and Gal, PRL 89, 172502 (2002). \rightarrow negative? (but positive on $d\Lambda\Lambda$ model)

Introduction:

The Faddeev-Yakubovsky search for $_{\Lambda\Lambda}{}^{4}$ H

Solution Filikhin and Gal, PRL 89, 172502 (2002). \rightarrow negative? (but positive on $d\Lambda\Lambda$ model)

Stochastic variational search for $_{\Lambda\Lambda}{}^{4}H$

The result strongly depends on the choice of ΛN interaction. What is the problem on theoretical search for ${}_{\Lambda\Lambda}{}^{4}$ H?

Our publication concluded that "*A theoretical search for* $_{\Lambda\Lambda}{}^{4}$ H *is still an open subject*," because the " ${}^{3}S_{1}$ ΛN *interaction has to be determined very carefully, since* $B_{\Lambda\Lambda}$ *is sensitive to the* ${}^{3}S_{1}$ *channel of the* ΛN *interaction.*"

The How to determine the ${}^{3}S_{1}$ ΛN interaction?

Introduction: S=-2 hypernucleus

- A key issue of S=-2 study: The total binding energies of the S=-2 hypernuclei strongly depend on the strength of the ΛN interaction than the strength of the ΛΛ interaction.
 - Sor example, ${}^{4}\text{H} \sim pn\Lambda\Lambda$
 - Number of ΛN pairs: 4Number of ΛΛ pairs: 1

Introduction:

\otimes How to determine the ${}^{3}S_{1}$ ΛN interaction?

- Solution A detailed analysis concerning Λp scattering has not yet become available.
- Subscription Experimental B_{Λ} values for ${}_{\Lambda}{}^{4}H^{*}$, ${}_{\Lambda}{}^{4}He^{*}$ and ${}_{\Lambda}{}^{5}He^{*}$ would give useful information for pinning down the ${}^{3}S_{1}$ ΛN interaction.
- The However, there is a long standing problem on *s*-shell A hypernuclei: anomalously small binding of $^{5}_{\Lambda}$ He.
 - Recently, Akaishi *et al.* successfully resolved the anomaly by explicitly taking account of ΛN-ΣN coupling.
 - [®]Akaishi *et al.*, PRL **84**, 3539 (2000).

Anomalously small binding of

She Why is the ⁵He anomaly important for the study of S=−2 hypernuclei?

The algebraic structure of $\sigma \cdot \sigma$ part of ΛN potential for S=-2 hypernuclei is same as that for ${}_{\Lambda}{}^{5}$ He.

Anomalously small binding of

Exotic baryon admixture

The purpose of this work

Systematic study for the complete set of *s*-shell A hypernuclei with the strangeness S=-1 and -2 in a framework of full-coupled channel formulation.
Theoretical search for ⁴_{AA}H.
Fully baryon mixing of ⁵_{AA}H and ⁵_{AA}He.

NN, YN and YY potentials

- *NN* interaction: Minnesota potential
 - The NN interaction reproduces the low energy NN scattering data, and also reproduces reasonably well both the binding energies and sizes of ²H, ³H, ³He, and ⁴He.
- YN interaction: D2' potential
 The YN interaction reproduces the experimental B_A of A=3-5 hypernuclei; Free from the ⁵_A He anomaly.
- ***** YY interaction: Simulating Nijmegen model (ND or NF) ***** Fully coupled channel; ${}^{1}S_{0}$ ***** ard-core radius ***** ND: r_{c} =(0.56, 0.45) fm
 I=1
 NE: (0.52, 0.52) fm

Ab initio calculation with stochastic variational method

- The variational trial function must be flexible enough to incorporate both
 - Solution $\mathbf{\Sigma}$ degrees of freedom and
 - Higher orbital angular momenta.
- $\textcircled{P} = \sum_{i} c_{i} \Phi_{JMTMT}(\mathbf{x}; \mathbf{A}_{i}, u_{i})$

$$\Phi_{JMIMI}(\boldsymbol{x}, \boldsymbol{A}_{i}, \boldsymbol{u}_{i})$$

 $=\mathcal{A}\{G(\boldsymbol{x}; \boldsymbol{A}_{i})[\boldsymbol{\theta}_{(kl)i}(\boldsymbol{x}; \boldsymbol{u}_{i}) \times \boldsymbol{\chi}_{si}]_{JM} \boldsymbol{\eta}_{MI}\}$

Complete six-body treatment

Ab initio calculation with SVM

SVM is capable of handling the massive calculation.

Desired computational power

Ab initio calculation with stochastic variational method An example of isospin function

Ab initio calculation with stochastic variational method Stochastic variational method An example of isospin function ⁶He, (J=0, I=0); 16 channels

Ab initio calculation with stochastic variational method An example of isospin function \oplus ⁶He, (*J*=0, *I*=0); 16 channels $\left[\left[\left[NN\right]_{0}N\right]_{1/2}N\right]_{0}\Lambda\Lambda\right]_{00},\qquad \left[\left[\left[\left[NN\right]_{1}N\right]_{1/2}N\right]_{0}\Lambda\Lambda\right]_{00},$ $\left[\left[\left[NN\right]_{0}N\right]_{1/2}N\right]_{1}\Sigma\right]_{0}\Lambda_{00}, \quad \left[\left[\left[NN\right]_{1}N\right]_{1/2}N\right]_{1}\Sigma\right]_{0}\Lambda_{00},$ $\left[\left[\left[NN\right]_{1}N\right]_{3/2}N\right]_{1}\Sigma\right]_{0}\Lambda\right]_{00},$ $\left[\left[\left[NN\right]_{0}N\right]_{1/2}N\right]_{0}\Sigma\right]_{1}\Sigma\right]_{00},$ $\left[\left[\left[NN\right]_{1}N\right]_{1/2}N\right]_{0}\Sigma\right]_{0}\Sigma$ $\boldsymbol{\eta}_{00} = \left[\left[\left[\left[NN \right]_{0} N \right]_{1/2} N \right]_{1} \boldsymbol{\Sigma} \right]_{1} \boldsymbol{\Sigma} \right]_{00}, \quad \left[\left[\left[\left[NN \right]_{1} N \right]_{1/2} N \right]_{1} \boldsymbol{\Sigma} \right]_{1} \boldsymbol{\Sigma} \right]_{00},$ $\left[\left[\left[NN\right]_{1}N\right]_{3/2}N\right]_{1}\Sigma\right]_{1}\Sigma_{00}, \quad \left[\left[\left[NN\right]_{1}N\right]_{3/2}N\right]_{2}\Sigma_{1}\Sigma_{00},$ $\left[\left[\left[NN\right]_{0}N\right]_{1/2}N\right]_{0}N\right]_{1/2}\Xi_{00}, \quad \left[\left[\left[NN\right]_{1}N\right]_{1/2}N\right]_{0}N\right]_{1/2}\Xi_{00},$ $\left[\left[\left[NN\right]_{0}N\right]_{1/2}N\right]_{1/2}E\right]_{00}, \quad \left[\left[\left[NN\right]_{1}N\right]_{1/2}N\right]_{1/2}E\right]_{00},$ $\left[\left[\left[NN\right]_{1}N\right]_{2/2}N\right]_{1}N\right]_{2/2}$

Solutions Using the ND_S YY potential, we obtain $\Delta B_{\Lambda\Lambda}^{(calc)}({}_{\Lambda\Lambda}^{6}He) = B_{\Lambda\Lambda}^{(calc)}({}_{\Lambda\Lambda}^{6}He) - 2 B_{\Lambda}^{(calc)}({}_{\Lambda}^{5}He)$

= 1.55 MeV,

which is slightly larger than the experimental value, $\Delta B_{\Lambda\Lambda}^{(exp)} {\binom{6}{Me}} = 1.01 \pm 0.20^{+0.18} - 0.11 \text{ MeV}.$ On the other hand, using NF_S YY potential,

 $\Delta B_{\Lambda\Lambda}^{(\text{calc})}({}_{\Lambda\Lambda}^{6}\text{He}) = 1.12 \text{ MeV},$

is fairly in good agreement with the experiment. We have also calculated the hypernuclei using a modified ND_S (mND_S) potential; the strength of the $\Lambda\Lambda$ diagonal part of the mND_S is reduced by multiplying by

YY potentials

The $V_{\Lambda\Lambda-\Lambda\Lambda}$ potential:

YY potentials

The $V_{\Lambda\Lambda-N\Xi}$ potential:

YY potentials

The $V_{N \equiv -N \equiv}$ potential:

Baryon mixing in ⁵H We assume that all of the baryons occupy same (0s) orbit.

$$H = \begin{pmatrix} H_{\Lambda\Lambda} & V_{NE-\Lambda\Lambda} & V_{\Lambda\Sigma-\Lambda\Lambda} \\ V_{\Lambda\Lambda-NE} & H_{NE} & V_{\Lambda\Sigma-NE} \\ V_{\Lambda\Lambda-\Lambda\Sigma} & V_{NE-\Lambda\Sigma} & H_{\Lambda\Sigma} \end{pmatrix},$$

$$V_{\Lambda\Lambda-NE} = v_{\Lambda\Lambda-NE} ,$$

$$V_{\Lambda\Lambda-\Lambda\Sigma} = \sum_{i=1}^{N} v_{N_i\Lambda-N_i\Sigma} ,$$

$$V_{NE-\Lambda\Sigma} = v_{NE-\Lambda\Sigma} ,$$

$$\alpha E^{-}$$

$$A \Sigma \qquad t \Sigma \Lambda$$

$$f (\sum_{\Lambda \Sigma} H) \qquad f (\sum_{\Lambda \Sigma} I) \qquad f (\sum_{$$

Baryon mixing in ⁵H Algebraic factors for each averaged coupling potential of the allowed spin state, v^s or v^t:

$$\sqrt{\frac{9}{8}} \overline{v}_{NA-N\Sigma}^{t} + \sqrt{\frac{1}{8}} \overline{v}_{NA-N\Sigma}^{s} (\text{for } S_{A\Sigma} = 0)
 \sqrt{\frac{3}{3}} \overline{v}_{NA-N\Sigma}^{t} - \sqrt{\frac{3}{8}} \overline{v}_{NA-N\Sigma}^{s} (\text{for } S_{A\Sigma} = 1)
 \sqrt{\frac{1}{2}} \overline{v}_{AA-NE}^{s}
 \sqrt{\frac{1}{2}} \overline{v}_{AA-NE}^{s}
 \sqrt{\frac{1}{2}} \overline{v}_{AA-NE}^{s} (\text{for } S_{A\Sigma} = 0)
 \frac{3}{2} \overline{v}_{NE-A\Sigma}^{t} (\text{for } S_{A\Sigma} = 0)
 \frac{3}{2} \overline{v}_{NE-A\Sigma}^{t} (\text{for } S_{A\Sigma} = 1)$$

Solving the eigenvalue problem,

 $\det |h - \lambda E| = 0,$ we have the ground state energy, E = -11.82 MeV(for the mND_s) or E = -11.82 MeV(for the NF_{S}), and NE probability, $P_{NF} = 3.98 \%$ (for the mND_s) or $P_{NF} = 2.83 \%$ (for the NF_s).

$$h = \begin{vmatrix} \frac{\langle H_{AA} \rangle}{P_{AA}} & \frac{\langle V_{NE-AA} \rangle}{\sqrt{P_{AA}} P_{NE}} & \frac{\langle V_{A\Sigma-AA} \rangle}{\sqrt{P_{AA}} P_{A\Sigma}} \\ \frac{\langle V_{AA-NE} \rangle}{\sqrt{P_{AA}} P_{NE}} & \frac{\langle H_{NE} \rangle}{P_{NE}} & \frac{\langle V_{A\Sigma-NE} \rangle}{\sqrt{P_{NE}} P_{A\Sigma}} \\ \frac{\langle V_{AA-A\Sigma} \rangle}{\sqrt{P_{AA}} P_{A\Sigma}} & \frac{\langle V_{NE-A\Sigma} \rangle}{\sqrt{P_{NE}} P_{A\Sigma}} & \frac{\langle H_{A\Sigma} \rangle}{P_{A\Sigma}} \\ = \begin{pmatrix} -9.12 & -1.82 & -14.52 \\ -1.82 & 5.02 & -10.37 \\ -14.52 & -10.37 & 92.45 \end{pmatrix} \text{ (for the mND}_{S} \\ \text{or} & \text{i} \\ = \begin{pmatrix} -6.10 & -20.47 & -14.91 \\ -20.47 & 115.3 & -10.01 \\ -14.91 & -10.01 & 101.6 \end{pmatrix} \text{ (for the NF}_{S} \end{pmatrix}$$

Solving the eigenvalue problem of only the first 2x2 subspace,

 $\det |h - \lambda E| = 0,$ we have the ground state energy, E = -9.35 MeV(for the mND_s) or E = -9.46 MeV(for the NF_{s}), and NE probability, $P_{NF} = 1.57 \%$ (for the mND_s) or $P_{NF} = 2.62 \%$ (for the NF_s).

$$h = \begin{vmatrix} \frac{\langle H_{AA} \rangle}{P_{AA}} & \frac{\langle V_{NE-AA} \rangle}{\sqrt{P_{AA}P_{NE}}} & \frac{\langle V_{A\Sigma-AA} \rangle}{\sqrt{P_{AA}P_{A\Sigma}}} \\ \frac{\langle V_{AA-NE} \rangle}{\sqrt{P_{AA}P_{NE}}} & \frac{\langle H_{NE} \rangle}{P_{NE}} & \frac{\langle V_{A\Sigma-NE} \rangle}{\sqrt{P_{NE}P_{A\Sigma}}} \\ \frac{\langle V_{AA-A\Sigma} \rangle}{\sqrt{P_{AA}P_{A\Sigma}}} & \frac{\langle V_{NE-A\Sigma} \rangle}{\sqrt{P_{NE}P_{A\Sigma}}} & \frac{\langle H_{A\Sigma} \rangle}{P_{X\Sigma}} \\ = \begin{pmatrix} -9.12 & -1.82 & -14.52 \\ -1.82 & 5.02 & -10.37 \\ -14.52 & -10.37 & 92.45 \end{pmatrix} \quad \text{(for the mND)}$$
or
$$= \begin{pmatrix} -6.10 & -20.47 & -14.91 \\ -20.47 & 115.3 & -10.01 \\ -14.91 & -10.01 & 101.6 \end{pmatrix} \quad \text{(for the NF}_{S}$$

The NA-N and $N \equiv -\Lambda \Sigma$ potentials enhance the

ground state energy, E = -9.35 MeVE = -11.82 MeV,and also the NE probability, $P_{NE} = 1.57 \%$ $P_{NE} = 3.98 \%$, for the mND_s potential.

$$\begin{aligned} h &= \begin{vmatrix} \frac{\langle H_{\Lambda\Lambda} \rangle}{P_{\Lambda\Lambda}} & \frac{\langle V_{NE-\Lambda\Lambda} \rangle}{\sqrt{P_{\Lambda\Lambda}P_{NE}}} & \frac{\langle V_{\Lambda\Sigma-\Lambda\Lambda} \rangle}{\sqrt{P_{\Lambda\Lambda}P_{\Lambda\Sigma}}} \\ \frac{\langle V_{\Lambda\Lambda-NE} \rangle}{\sqrt{P_{\Lambda\Lambda}P_{NE}}} & \frac{\langle H_{NE} \rangle}{P_{NE}} & \frac{\langle V_{\Lambda\Sigma-NE} \rangle}{\sqrt{P_{NE}P_{\Lambda\Sigma}}} \\ \frac{\langle V_{\Lambda\Lambda-\Lambda\Sigma} \rangle}{\sqrt{P_{\Lambda\Lambda}P_{\Lambda\Sigma}}} & \frac{\langle V_{NE-\Lambda\Sigma} \rangle}{\sqrt{P_{NE}P_{\Lambda\Sigma}}} & \frac{\langle H_{\Lambda\Sigma} \rangle}{P_{\Lambda\Sigma}} \\ \frac{\langle I_{\Lambda\Lambda}P_{\Lambda\Sigma} \rangle}{\sqrt{P_{\Lambda\Lambda}P_{\Lambda\Sigma}}} & \frac{\langle V_{NE-\Lambda\Sigma} \rangle}{\sqrt{P_{NE}P_{\Lambda\Sigma}}} & \frac{\langle I_{\Lambda\Sigma} \rangle}{P_{\Lambda\Sigma}} \\ e &= \begin{pmatrix} -9.12 & -1.82 & -14.52 \\ -1.82 & 5.02 & -10.37 \\ -14.52 & -10.37 & 92.45 \end{pmatrix} & \text{(for the mND}_{\text{S}}), \\ \text{or} & & & \\ e &= \begin{pmatrix} -6.10 & -20.47 & -14.91 \\ -20.47 & 115.3 & -10.01 \\ -14.91 & -10.01 & 101.6 \end{pmatrix} & \text{(for the NF}_{\text{S}}). \end{aligned}$$

The $N\Lambda$ - $N\Sigma$ and $N\Xi$ - $\Lambda\Sigma$ potentials enhance the

ground state energy, E = -9.46 MeVE = -11.82 MeV,but hardly enhance the NE probability, $P_{NE} = 2.62 \%$ $P_{NE} = 2.83 \%,$

for the NF_s potential.

$$h = \begin{vmatrix} \frac{\langle H_{AA} \rangle}{P_{AA}} & \frac{\langle V_{NE-AA} \rangle}{\sqrt{P_{AA}} P_{NE}} & \frac{\langle V_{A\Sigma-AA} \rangle}{\sqrt{P_{AA}} P_{A\Sigma}} \\ \frac{\langle V_{AA-NE} \rangle}{\sqrt{P_{AA}} P_{NE}} & \frac{\langle H_{NE} \rangle}{P_{NE}} & \frac{\langle V_{A\Sigma-NE} \rangle}{\sqrt{P_{NE}} P_{A\Sigma}} \\ \frac{\langle V_{AA-A\Sigma} \rangle}{\sqrt{P_{AA}} P_{A\Sigma}} & \frac{\langle V_{NE-A\Sigma} \rangle}{\sqrt{P_{NE}} P_{A\Sigma}} & \frac{\langle H_{A\Sigma} \rangle}{P_{A\Sigma}} \\ = \begin{pmatrix} -9.12 & -1.82 & -14.52 \\ -1.82 & 5.02 & -10.37 \\ -14.52 & -10.37 & 92.45 \end{pmatrix} \quad \text{(for the mND)}$$
or
$$= \begin{pmatrix} -6.10 & -20.47 & -14.91 \\ -20.47 & 115.3 & -10.01 \\ -14.91 & -10.01 & 101.6 \end{pmatrix} \quad \text{(for the NF}_{S}$$

14.91

-10.01

- Summary
 We have performed a systematic study for S=-2 hypernuclei ($^{4}_{\Lambda\Lambda}$ ⁴H, $^{5}_{\Lambda\Lambda}$ ⁵He, $^{6}_{\Lambda\Lambda}$ ⁶He), in a complete six-body and fully coupled channel treatment. baryons which is consistent with all of the experimental binding energies of s-shell (hyper-)nuclei, ⁴_A⁴H has a \rightarrow ⁴_{AA} H could exist. particle stable bound state. Solution Fully baryon mixing of the \int_{4}^{5} H and \int_{4}^{5} He. BLarger P_{NE} probability has been obtained even for the weaker $\Lambda\Lambda$ -N Ξ potential of the mND_s.
 - **The** ΛN - ΣN and ΞN - $\Lambda \Sigma$ potential play important roles and significantly enhance the ground state en-

In the future study

- The present study is the first attempt to explore the few-body systems with multistrangeness in a fully coupled channel scheme.
 Further studies should be made:
 - Structure of ${}_{\Lambda\Lambda}{}^{4}$ H.
 - Structure of ${}_{\Lambda\Lambda}{}^{5}$ H and ${}_{\Lambda\Lambda}{}^{5}$ He.

Scharge symmetry breaking between $\Lambda \Lambda^{5}$ H and $\Lambda \Lambda^{5}$ He.

Structure of ${}_{\Lambda\Lambda}{}^{6}$ He.

The other exotic few-body systems with strangeness.

In the future study

- The other exotic few-body systems with strangeness.
 - Kaon-nucleus systems.
 - Solution Service Structure of baryon such as $\Lambda(1405)$.
 - [®] Pentaquark.

Relativistic effects should be taken into account.

Semi-relativistic hamiltonian in the center-of-mass system. $H = \sum_{i=1}^{A} (\sqrt{m_i^2 + p_i^2} - m_i) + \sum_{i < j} V_{ij}, \quad (\text{with } \sum_{i=1}^{A} p_i = 0)$ For example,

we suppose the ³H of $(0s)^3$, with size parameter *b*.

$$\phi = \exp\left\{-\frac{1}{2}b^2\sum_{i=1}^3 r_i^2\right\}$$

