Neutrino experiment at J-PARC

Yoshikazu Yamada (KEK-IPNS) for T2K collaboration and J-PARC Neutrino facility construction group Talk at "NP04" Tokai, Aug. 2, 2004

Contents (summary for v part of NPO4)

- Introduction of T2K experiment
- Proton beam line
- Target & neutrino beam
- Neutrino Detectors
- Schedule

T2K collaboration

- Formed in May 2003
- 12 countries, 53 institutions
 - ~150 collaborators
- Spokesperson: K.Nishikawa

Canada: TRIUMF, U. Alberta, York U., U. Toronto,U. Victoria, U. Regina China: IHEP(Inst. Of High Energy Phys.) France: CEA Saclay Italy: U. Roma, U. Bari, U. Napoli, U. Padova Japan: ICRR, U. Tokyo, KEK, Tohoku U., Hiroshima U., Kyoto U., Kobe U., Osaka City U., U. Tokyo, Miyagi U. of Education Korea: Seoul National U., Chonnam National U., Dongshin U., Kangwon U., Kyungpook National U., KyungSang National U.,SungKyunKwan U., Yonsei U. Poland: Warsaw U. Russia: INR Spain: U. Barcelona, U. Valencia Switzerland: U. Geneva UK: RAL, Imperial College London, Queen Mary Westfield College London, U. Liverpool USA: UCI, SUNY-SB, U. Rochester, U. Pennsylvania, Boston U., CSU, Duke, Dominguez Hills, BNL, UCB/LBL, U. Hawaii, ANL, MIT, LSU, LANL, U. Washington

Physics motivations

- •Discovery of $\nu_{\mu \rightarrow} \nu_e$ appearance
- •Precise meas. of disappearance $\nu_{\mu \rightarrow} \nu_{x}$
- Discovery of CP violation (Phase2)

Neutrino oscillation

If neutrinos are massive,

v_{μ} disappearance

Off Axis Beam

 Pions produced at target E_v = <u>2(E/</u> <u>2(E/</u> <u>2(E/</u> <u>2(E/</u> <u>2(E/</u> <u>2(E/</u> <u>2(E/</u> <u>12</u> <u>12</u> <u>13</u> <u>14</u> <u>18</u> <u>190</u> <u>150</u> <u>100</u>
 <u>150</u> <u>100</u>
 <u>150</u> <u>100</u>
 <u>150</u> <u>100</u>
 <u>150</u> <u>100</u>
 <u>100</u>
 <u>18</u>
 <u>100</u>
 <u>18</u>
 <u>100</u>
 <u>190</u>
 <u>190</u>

v_e appearance

Discovery of v_e appearance $(\theta_{13}, \Delta m_{13})$ $P_{\mu \rightarrow e} \approx \sin^2 \theta_{23} \cdot \sin^2 2\theta_{13} \cdot \sin^2 (1.27 \Delta m_{13}^2 L / E_v)$

Neutrino facility

Approved in Dec. 2003 for 5 years construction

Components

- Primary proton beam line
- Target/Horn system
- Decay volume (130m)
- Beam dump
- Muon monitor
- Near neutrino detector (280m)
- Second near neutrino detector

(~2km): not approved yet

Proton beam line

Preparation section Normal conducting magnets

Arc Section 84.5°, R=105m, Super conducting magnets

Final Focusing Section Normal conducting magnets Target station **Specifications (50GeV)**

Single turn fast extraction

- >8 bunches/~5µs
- >3.3x10¹⁴protons/spill
- Cycle: 3.5 second
- $\epsilon = 6\pi$ mm.mr, Δp/p=0.31%
 - (ε=**7**.5π mm.mr,

∆p/p=0.36% @40GeV)

Preparation Section

Matching beam from PS to ARC section

winding coil for prototype magnet 12 at KEK (7/28/2004) Trial Iron Yoke & Plastic Collar

Final Focusing section

beam Graphite target

Two scenarios

Water cooling

- •Required thermal transfer (6kW/m²K) was achieved in test setup.
- •Shrink of graphite due to radiation damage may be a problem.
 - \Rightarrow irradiation test at BNL

Helium gas cooling

- No container for graphite
- 500W/m²K expected with 50m/s at 5 atm
- •He temperature 380°C at max.
- 17 •He cooling test in next Sep.

Horn system

1st Horn 2nd Horn

- •Converge secondary pions into decay volume
- 3 horn system
- Carbon target in 1st horn
- Made with Aluminum
- •320kA pulse current
- Under design and R&D

Cooled by water mist

2 Step: Step-50 Increment 59: Step Time = 50000E-06 Primary Var: NT11 Deformed Var: not set Deformation Scale Factor, not set

•Test of water mist cooling

6kW/m²K achieved

No damage by repetition fatigue after 1.1x10⁷ pulse load 19

CNGS/LHC-type design
Core:Graphite Blocks
Cooling Module(CM):
Water circuit cast Al alloy
More optimization for 4MW

- Muon monitors @140m (dump)
 - Fast (spill-by-spill) monitoring of beam direction / intensity

Near detector @280m

- Neutrino intensity/spectrum/direction
- Two detector systems for on and off axis.

Second Near Detector @2km

- v_{μ} energy spectrum and v_e background study with almost same condition as for SK
- Not approved yet

Far Detector @295km: Super Kamiokand

Near Detector @280m

Near Detector @2km

Construction schedule

- Five years construction in 2004~2008
- Detailed design for construction in this year
- Most heavy construction in last 2 years

Summary

- •T2K collaboration started in 2003.
 - •Discovery of $\nu_{\mu \rightarrow} \nu_{e}$ appearance
 - 100 times larger intensity than K2K
 - •Off axis(2~3°) configuration with SK
- Neutrino beam facility was approved for five years construction in 2004 ~ 2008.
 - •Design and R&D are on going.
 - Construction of decay volume started.
- Start experiment in 2009