Summary for Strangeness Nuclear Physics Session

L. Tang (Hampton University)

- Talks: 13 in parallel session Topics includes:
 - S=-2 hypernuclei (YY interaction)
 - S=-1 Λ -hypernuclei (YN interaction, γ spectroscopy, Δ S=1 weak decay, and exotic strange nuclei)
 - Kaonic nuclei (new physics)
 - Results from FINUDA (Foreign facility)

Why study hypernuclei? - A. Gal (Plenary speaker)

- YN and YY interactions are not (and will not be) fully available from free-space measurement; unified BB phenomenology
- Study hypernuclei illuminates strange matter at medium and (occasionally) high density; connection to QCD properties Connection to other strange hadrons in matter: K⁻, ... hyperonic excitations: $\Lambda(1405)$, $\Lambda(1520)$, ... hidden strangeness: ϕ , f₀, ...
- Connection to strange quark matter, strangelets, neutron stars, hyperstars, ...
- Hyponuclei (S=+1) ? θ⁺ nuclei?

Development From New Facilities (JLAB)

- Electro- and Photoproductions
- New spectroscopy of Ahypernuclei with different spin-parity states
- High precision mass spectroscopy
- Can have other future possibilities
- The most significant program: *HKS Exp*. led by Prof. O. Hashimoto

Development of New Facilities (FINUDA, presented by S. Marcello)

- Current: $A(K_{stop}, \pi)_A$ (K from ϕ at rest)
- Spectroscopy, achieved 1.4MeV resolution stil preliminary
- Weak decay can be studied but not yet done
- Found hint for rare weak decay of ${}^{4}_{\Lambda}$ He (DD)
- Other possiblities:
 - Σ-hypernuclei
 - High neutron rich Λ -hypernuclei
 - Kaonic nuclei

Near future: more data taking in 2005-2006

- Far future: upgrade for higher L_{int} and energy
- γ-spectroscopy?

Development From New Facilities and New Technique (J-PARC)

- World leading and unique hadron facility
- High intensity and better quality beam
- Good chances for *Strangeness and Hypernuclear Physics*
- Unique facility to study
 - S=-2 hypernuclei (a gateway to multi-strangeness)
 - γ spectroscopy for Λ -hypernuclei (S=-1)
 - Weak decay of Λ -hypernuclei
 - Kaonic Nuclei
 - YP scattering
 - Mass spectroscopy of S=-1 hypernuclei (no presentation)

S=-2 hypernuclei (YY interaction) Six speakers: four Exp. and two Theo.

- T. Nagae (KEK Exp): Ξ-Hypernuclei (Day 1 exp.)
 T. Fukuda (Osaka-EC): ⁴_{ΛΛ}H and ⁵_{ΛΛ}H hypernuclei
 K. Nakazawa (Gifu): Study of ΛΛ-H hypernuclei
 M. Natsume (Nagoya): Nano Imaging Tracker (NIT)
- H. Namura (KEK): 4-, 5-, & 6-body cal. of S=-2 s-shell hypernuclei
- Y. Fujiwara (Kyoto): A microscopic approach to the YN and YY interactions in hypernuclei

E Hypernuclear Spectroscopy: A gateway for the spectroscopic studies of S=-2 systems

Not possible in any other facilities Ξ-Nucleus potential depth $-\Xi^{-}$ inside a neutron star Conversion width $- \Xi N - \Lambda \Lambda$ mixing Next target: Double-Λ excited levels - direct population through $\Xi N - \Lambda \Lambda$ mixing - Gamma-ray transitions with Hyperball-3

(K⁻,K⁺) experiments with K1.8 + <u>SKS</u>

1.0x107/pulse

Produced Hypernuclear species (S=-2) *T. Fukuda*

- Direct process $(K^- + {^7Li} -> X + K^+)$
 - Only ${}^{4}\text{H}_{\Lambda\Lambda}$ and ${}^{5}\text{H}_{\Lambda\Lambda}$
 - No twin single- Λ
- Stopped Ξ^- process ($\Xi^- + {}^7\text{Li}$)
 - Smaller contribution due to low stopping power
 - Twin; ${}^{4}H_{\Lambda}$ + ${}^{4}H_{\Lambda}$, ${}^{4}H_{\Lambda}$ ${}^{3}H_{\Lambda}$

 $({}^{3}H_{A} {}^{3}H_{A}$ not produced due to Q-value)

- Measure $\Delta B_{\Lambda\Lambda}$ with better precision and stat. Nagara -- the best event $\rightarrow \Delta B_{\Lambda\Lambda} = 1.01 \pm 0.20 + 0.18$ MeV much smaller than old value of ~4-5 MeV, a crucial issue
- New CDS (CDS2) is needed.

BNL E961 improvements over BNL E906

	E906	E961	
Target	⁹ Be (15 cm)	⁷ Li(LiH) (20 cm)	Limit the produced species Low density> reduce the multiple scattering and dE (x0.4) > longer target
CDS momentum resolution	~4.3 MeV/c	~2.4 MeV/c	Improved vertex resolution (dE/ dx correction) + 30 % increased CDS B field (bending power)
Signal to Ξ ⁻ decay background	4:1	16:1	Improved vertex resolution + Momentum resolution a new vertex detector
Statistics	1 450 hours 7Tp/spill 2.0/4.3 sec	16 750 hours 60Tp/spill 8.0/10.3 sec	48D48 (x2.4), CDS (x1.26) Larger target size * lower density = 0.83 If the cross section is the same.

S=-2 hypernuclei (YY interaction) Six speakers: four Exp. and two Theo.

- T. Nagae (KEK Exp): Ξ-Hypernuclei (Day 1 exp.)
 T. Fukuda (Osaka-EC): ⁴_{ΛΛ}H and ⁵_{ΛΛ}H hypernuclei
 K. Nakazawa (Gifu): Study of ΛΛ-H hypernuclei
 M. Natsume (Nagoya): Nano Imaging Tracker (NIT)
- H. Namura (KEK): 4-, 5-, & 6-body cal. of S=-2 s-shell hypernuclei
- Y. Fujiwara (Kyoto): A microscopic approach to the YN and YY interactions in hypernuclei

Aug.02-04,2004 NP04

Status of experiments *I* Double-A hypernuclei from E373

2002 3rd double-A hypernucleus Nuclear species of the double- Λ is perhaps ${}^{6}_{\Lambda\Lambda}$ He, ${}^{7}_{\Lambda\Lambda}$ He or ${}^{11}_{\Lambda\Lambda}$ Be. prelimina

Our knowledge for $\Lambda\Lambda$ int. until now.

 $\Lambda\Lambda$ interaction is attractive but weak

Statistics of experiments NP04 NP04 NP04 NP04 NP04

SC

	Danysz, <i>et al</i> . 1963	E176 1991	95% finished E373 2004	
#ofΞ ⁻ stop	~4	~80	~10 ³	
Light nuclei with S=-2	1	1	~6	
Twin single-A	0	2~3	2	

<u>Quite poor statistics until now.</u>

BNL-E964

New Hybrid-Emulsion Experiment at J-PARC

Aug.02-04,2004

Outline : No K⁺ tagging \rightarrow no spectrometer magnet Trigger ••• K⁻¹²C reaction × X-ray(F \rightarrow D)

prelimi

New Hybrid-Emulsion Experiment at J-PARC

Aug.02-04,2004

To get $\sim 10^3$ double- Λ hypernucleus via $\sim 10^5 \Xi^-$ stopping events

Information:

- nuclear chart of S=-2 nuclei
- γ -ray from double- Λ hypernuclei

Developments :

- •Hyperball
- fully automated scanning system
- •nuclear emulsion itself \rightarrow next speaker (M. Natsume)
-

Fine grain emulsion crystal to get better position resolution at J-PARC

SEM Micrographs of AgBr Grains

SEM : scanning electron microscope

E373 emulsion (ET-7C,D)

NIT(Nano Image Tracker developed by Nagoya

Size of AgBr Grains

Fine grain emulsion crystal to get better position resolution at J-PARC Tracks due to 5MeV & - particles Dark Field Image of Light Microscope

ordinal emulsion

Development

1) density $2.8(g/cc) \rightarrow 3.5(g/cc)$ or 2) size : 40nm \rightarrow 70~80[?]nm

> Pions & fast protons without beam tracks

Higher dense exposure

S=-2 hypernuclei (YY interaction) Six speakers: four Exp. and two Theo.

- T. Nagae (KEK Exp): Ξ-Hypernuclei (Day 1 exp.)
 T. Fukuda (Osaka-EC): ⁴_{ΛΛ}H and ⁵_{ΛΛ}H hypernuclei
 K. Nakazawa (Gifu): Study of ΛΛ-H hypernuclei
 M. Natsume (Nagoya): Nano Imaging Tracker (NIT)
- H. Namura (KEK): 4-, 5-, & 6-body cal. of S=-2 s-shell hypernuclei
- Y. Fujiwara (Kyoto): A microscopic approach to the YN and YY interactions in hypernuclei

γ Spectroscopy of Hypernuclei at J-PARC H. Tamura (Tohoku)

HyperBall has been very successful with energy resolution of ~2-3 keV
Study spin-dependent interactions, *Spin-Spin, Spin-Orbital, Tensor Force*Nuclear Shrinkage (~19%)
Future in J-PARC

Proposal for DAY1

Hypernuclear γ Spectroscopy by (K⁻,π⁻ γ)

K1.1+ SPESII

p_K= 1.1 GeV/c (spin-flip) and 0.8 GeV/c (spin-non-flip)

- Light Hypernuclei, Hyperfragments
- A=4-~30 all possible targets
- $\gamma\gamma$ coin, $\theta\gamma\pi/\theta\gamma\gamma$, polarization -> level scheme, spin-parity
- Doppler Shift Attenuation Method -> B(E2), B(M1)

Medium and Heavy Hypernuclei

• E1(p_{Λ} ->s_{\Lambda}), large θ -> large q

⁴_{Λ}He, ⁷_{Λ}He, ⁸_{Λ}Li, ⁸_{Λ}Be, ⁹_{Λ}Be, ¹¹_{Λ}B, ¹²_{Λ}C, ¹³_{Λ}C/ ¹⁴_{Λ}N, ²⁰_{Λ}Ne, ²³_{Λ}Na, ²⁷_{Λ}Al / ²⁸_{Λ}Si, ... etc. ⁸⁹_{Λ}Y, ¹³⁹_{Λ}La, ²⁰⁸_{Λ}Pb ... etc. 1-5day / target, Low-intensity beam usable

- Table of hyper-isotopes
- ΛN interaction (ΛN - ΣN , CSB, p-wave int..)
 - B(E2) -> shrinking effect, Parity inversion, ...
 - B(M1) -> μ_Λ in nucleus (medium effect)

Setup for γ **spectroscopy**

Weak decay of A hypernucleus H. Outa (RIKEN)

Study of the mechanism of baryon-baryon weak interaction.

Experimental difficulty in the nucleon measurement

✓ Difficulty in detecting neutrons.

 \rightarrow There is no experiment to observe both of the protons and neutrons simultaneously.

✓ Final state interaction (FSI) effect

 \rightarrow not well established theoretically

✓ Distinguish between the FSI and "ANN→nNN" process

Decay counter system

Measured with much improved accuracy

Excellent agreement with calculation based α - Λ potential with repulsive core (Kumagai-Fuse et al.)

At J-PARC

Lifetime of very-heavy hypernuclei ?

To J-PARC

Non-mesonic weak decay of ${}^{4}_{\Lambda}$ He and ${}^{4}_{\Lambda}$ H

see S.Ajimura : J-PARC LOI 21

Spin / isospin dependence

→ Need one-order higher statistics. → J-PARC !!

Kaonic Nuclei - M. Iwasaki (RIKEN)

- New mass spectrum of ³He(K⁻, n)X Evidence of state is more significant than that seen also in ³He(K⁻, n)X
- The state seems corresponding to
 - Baryon No. = 3
 - Strangeness = -1
 - Charge = 0
 - Isospin = 1
- Need more study on:
 - Intepretation? Most naively, deeply bound K?
 - Size, Spin, and Parity

Future experiments at KEK and J-PARC (1.1 K beam)

- Higher statistics but lower background
- Stop K⁻, also in flight K⁻?
- K⁻K⁻ bound state (highly densed strangeness matter)?

YP Scattering Experiments at J-PARC M. Ieiri (KEK)

Short lifetime of Y makes it very difficult
Existing data is in poor quality with great efforts
J-PARC brings good hopes for such experiments however the existing Tracking/CCD camera technique cannot handle the rate
Main reactions considered: Ξ⁻p, Σ⁺p, and Λp must against strong interaction conversion BG

Requests and Works Needed

- Requests
 - Separated beam line around 1.5-1.8 GeV/c
 - K⁻ intensity 10^7 /s with K/p > 1
 - Liquid H facility
- Works
 - Realistic optimization of setup
 - Background estimation (physical & inst.)
 - Fast imaging device
 - Trigger consideration

Exotic Strange Nuclei Lanskoy (Moscow)

Neutron rich hypernuclei

- Reaction mechanisms of ¹⁰B(π⁻,K⁺)¹⁰_ΛLi and ¹²C(π, K⁺)¹²_ΛBe; one- and two-step process
- Theo. to exp. (T. Fukuda's exp.) cross sections were compared; there is a factor of two difference

θ⁺ nuclei

To maximize cross section momentum transfer needs to be minimized
Magic momentum exist only for three body initial state reaction, for example, KNN→θN (P_K = 0.6 GeV/c and P_θ = 0), πNN →θΛ (P_K = 1.64 GeV/c and P_θ = 0), and γNN→θΣ (P_K = 1.93 GeV/c and P_θ = 0)
The narrow width (<5 MeV) may make bound θ⁺ nuclei possible