02-04/08/2004 NP04 - Nuclear and Particle Physics at J-PARC

Primary and Secondary Beam Lines in the Hadron-Beam Line Facility

KEK H. Noumi

Contents:

- 1. Primary Beam Line
- 2. Secondary Beam Lines from T1
 - 2.1 Layout plan at T1
 - 2.2 K1.8 beam line
 - 2.3 K1.1/0.8 beam line
- 3. Summary

1. Primary Beam Line (Phase I)

1. Primary Beam Line (Phase I)

Configulation of the SEB Line 5 sections (4 nodes and beam dump) Section 1...Matching Section: a beam ellipsoid matched at MP Section 2... beam transferred from MP to SM SM: branch B-Line/High-p BL in future Section 3... beam transferred from SM and forcused at TO T0: target station for Test BLs in future Section 4...beam transferred from T0 and forcused at T1 T1: target station for Secondary BLs Section 5...beam transferred from T1 to a Beam Dump

Summary of Magnets used for the SEB Line
 18 Bending Mags: 24 Quadrupoles Mags (Phase I: 30 GeV)
 40 second hand magnets
 from KEK/FNAL/ANL...

Magnet Recycling in the Matching Section

Optical Parameters of SE Beam at QFP-in

Horizontal		Vertical	
ε _H (mm mr)	4.4π	ε _v (mm·mr)	10.4π
$\alpha_{ m H}$	-2.21	$\alpha_{ m V}$	1.133
$\beta_{\rm H}$ (m)	26.476	$\beta_{\rm V}$ (m)	16.629
dp/p (%)	0.31		
η(cm/%)	0.518		
η'(mr/%)	0.084		

For 30 GeV from Tomizawa (2002.10.2)

Emittance (50 GeV) : $\varepsilon_{\rm H} = 2.7\pi$, $\varepsilon_{\rm V} = 6.3\pi$ Full Acceptance : $\varepsilon_{\rm H} = 10.3\pi$, $\varepsilon_{\rm V} = 24.4\pi$ mm mr

2. Secondary Beam Lines (Phase I)

T1 Target MARS+StarCD/ANSYS

(Yamanoi & Minakawa)

T1 Target: Ni rotating disks (t54mm: 30% int. length) divided into 5 disks 3mm gap btwn disks Direct Water Cooling ~80 Max. at 750kW (cal.)

2.1 Layout plan at T1 (Phase I)

- > Protection from 200 kW heat deposit in the T1-front area
 - \rightarrow Collimator before D1 (q1B)
 - → Water-cooled D1(Q1) yoke

Hard to cool beam pipes in magnet poles & vacuum flanges

→Front-end elems MUST be in Vacuum Careful design for safety maintenance: need R&D

- ➢ Only a production target in Phase I, T1
 → shared by 2 charged/1 neutral kaon beam lines
 Prod. Angle : -6 ° (K1.8), +6 ° (K1.1/0.8), +16 ° (K0)
- Layout w/o any Interference of Magnetic Fields btwn K1.8-D1/Q1 and K1.1/0.8-D1

2.1 Layout plan at T1 (Phase I)

2.2 K1.8 Beam Line

Decay TURTLE (3rd Order Optics + ES Figld)

K1.8 Beam Line Optics

Beam Momentum Analyzer

w/ TG, IF-windows (SUS-200µm,50µm)

MS1 Opening: ± 2 mm

3rd Order Optics Two octupoles are to be installed.

	K1.8	
	(50 GeV-15µA)	(30 GeV-9µA)
Max. Mom. (GeV/c)	2	
Length (m)	45.694	
Acceptance (msr.%) &	2.03(2.00 [%])	
K ⁻ (π) Intensity (ppp) #		
1.8 GeV/c	9.6E+06	2.0E+06
1.1 GeV/c	0.6E+06	0.1E+06
Electro-static	750kV/10cm	
Separator	6m × 2	
K ⁻ /π ⁻ @ 1.8 GeV/c ^{\$}	2.3(1.3%)	2.6
X/Y(FWHM) size @ FF (mm)	16/8	

& MS1 opening: $\pm 2mm$, MS2 opening: $\underline{-3.25mm},\pm 2.75mm$ # using Sanford-Wang formula, assuming 1pulse=3.53s(0.7s flat top)\$ cloud π not included, % values in () for no octupoles

No Octupoles: TG, IF-windows (SUS-200µm,50µm)

K1.8BR Line (Option I)

K1.8BR, ES1=500kV/10cm

K1.8BR Beam Line 3rd Order Optics

2004.7.30

	K1.8BR(Option I)	
	(50 GeV-15µA)	(30 GeV-9µA)
Length (m)	26.973	
Acceptance (msr.%)	4.5 [¥]	
K [−] Intensity (ppp)#		
1.1 GeV/c	9.1E+06	2.0E+06
0.8 GeV/c	1.7E+06	0.4E+06
0.6 GeV/c	0.2E+06	0.05E+06
Electro-static	500kV/10cm	
Separator	6m	
K ⁻ /π ⁻ @ 1.1 GeV/c ^{\$}	10	12
X/Y(FWHM) size @ FF (mm)	10/6	

¥ MS1 opening: ± 2mm

using Sanford-Wang formula, assuming 1pulse=3.53s(0.7s flat top)

\$ cloud π not included

2.3 K1.1/0.8 Beam Line (S-Type)

Decay TURTLE (3rd Order Optics) ²⁴

K1.1 Beam Line Optics

w/ TG, IF-windows (SUS-200µm,50µm)

MS1 Opening: ± 1 mm

K1.1 Beam Line 3rd Order Optics

2004.7.30

	K1.1	
	(50 GeV-15µA)	(30 GeV-9µA)
Max. Mom. (GeV/c)	1.1	
Length (m)	27.05	
Acceptance (msr.%)	4.1 [¥]	
K ⁻ (K ⁺) Intensity (ppp)#		
1.1 GeV/c	9.1E+06(81E+06)	2.0E+06(11E+06)
0.8 GeV/c	1.7E+06(18E+06)	0.4E+06(2.5E+06)
0.6 GeV/c	0.2E+06(2.6E+06)	0.05E+06(0.4E+06)
Electro-static	750kV/10cm	
Separator	2m × 2	
K^{-}/π^{-} @ 1.1 GeV/c ^{\$}	4.3	4.7
X/Y(FWHM) size @ FF (mm)	10/6	

¥ MS1 opening: ± 1 mm, MS2: ± 2 mm

using Sanford-Wang formula, assuming 1pulse=3.53s(0.7s flat top)

\$ cloud π not included

Comment on K1.1/0.8 C-type

K1.1/0.8 C-type: branches at D3, turns to the opposite side of K1.1/0.8 S-type

To be optimized for K-decay phys. lower momentum, shorter BL

Time sharing with K1.1/0.8 S-type for strangeness nucl. phys. No conflict with High-p BL

3. Summary

- Primary beam line (Phase I) Matching S. + Slope1 (SM) Slope2 + T0 + A-Line + T1 + Dump Using Second-hand Magnets Beam Spot at T1: σ~1.3 (1) mm for 30 (50) GeV realistic drawings for magnets, beam pipes, monitors, etc. in progress. (latest SEB parameters to be considered...)
- 2. Layout at T1

Water cooled Ni Disk Target: 30% int. length 200 kW heat deposit:

hardly design a beam pipe in the D1 gap Collimator/D1/Q1 in Vacuum Chamber

<u>Takahashi's talk tomorrow morning (SEB User J. Sess.)</u> Careful layout to avoid magnetic interference

btwn K1.8-D1/Q1 & K1.1/0.8-D1