J-PARC K_L Experiment – Approach 2 –

M. Yamaga Osaka Univ. Aug 4, 2004 @ NP04

Motivation

- ~300 events in 3 years at optimum experimental setup.
 - S.E.S. = 1×10^{-13}
 - 1-order better than KOPIO
 - 3-order better than E391a

 S.E.S. = 1 / (T x A x R) T: Data collection time. A: Acceptance, R: Decay rate e.g. T=3x10⁷sec(3year), A=0.01 R~150MHz A=0.5 R~3MHz c.f. E391a ~ 10KHz High-acceptance detector is crucial.

Strategy

- Same concept as E391a $+\alpha$
 - Pencil beam, 2 γ detection.
 - (Angular measurement of γ).
- High-acceptance
 - Side-calorimeter as an active γ detector.
 - Beam intensity might not necessarily so high.
 Less intensity-related backgrounds.
- High-energy
 - Better γ inefficiency

Sensitivity estimation

- Assumption
 - B-line
 - No limitation for the target, beamline and detector design.
 - Simplified beam and detector.

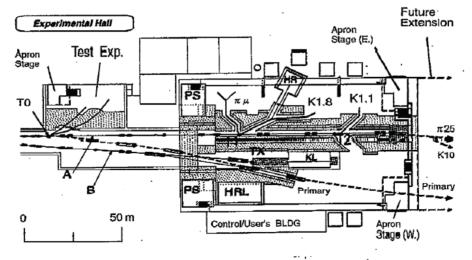
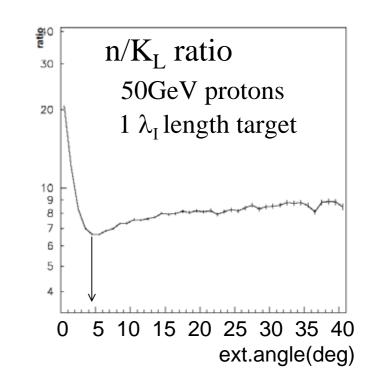
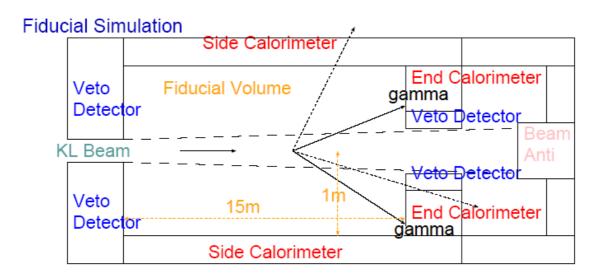



Fig. 2.1 Schematic layout of the experimental area at the 50-GeV PS.


Target, Beamline

- Target
 - 50 GeV protons on 1 λ_{I} length of target.
 - 4° extraction to minimize n/K_{L} ratio.
 - $< p_{KL} > ~ 5 \text{ GeV/c.}$
- Neutral beamline
 - 1.2 μ str of solid angle.
 - 0.75 $\lambda_{\rm I}$ Be and 9 X_0 Pb absorber.

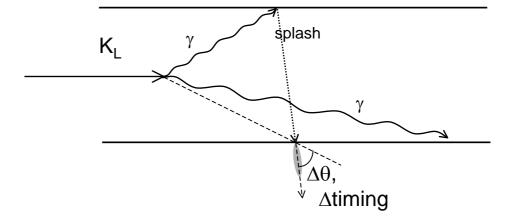
Detector

- 15m-long, $2m-\phi$ cylinder.
- Located at z=50m to avoid Λ decays.
- Both of side- and endcap- calorimeters are the active γ detectors.
- Beam-anti completely dead.

Signal Yield

- 2x10¹⁴ ppp intensity
 - 1.8x10²¹ protons / 3 years
 - $1.5 \times 10^{15} \,\text{K}_{\text{L}} / 3 \,\text{years} @ z=50 \text{m}$
 - 10 MHz of K_L decay rate @ z=52~60m
 - 1800 $\pi^0 \nu \nu$ decays / 3 years
- Signal yield = ~900 events / 3 years.
 - Endcap only = \sim 240 events

Side-calorimeter enhances by factor 3.8.


Optimization underway...

- Longer detector :
 - More decay probability.
 - More γ to side-calorimeter ... S/N ?
- Larger diameter :
 - Better separation of 2 γ s.
- Larger solid angle of beam :
 - More K_L.
 - Large beam size p_T resolution ?
 - Large beam hole BG by escaping particles.
 - Long detector ... 'effective' beam-hole size would be small.

Problem of shower splash

- Acceptance loss by splashed γ and e[±].
 - E>5MeV for γ veto ~50% of acceptance loss.
 Timing or angular measurement might help to reduce it.
- Better BG reduction rate expected for $2\pi^0$, $3\pi^0$ due to many γ s.

(Under study)

Applying to A-line

- Same detector configuration at A-line : 30GeV protons, 16° extraction, 20m beamline.
 - # of $K_L\,$: x 0.06
 - Decay prob. : x 3 (<p_{KL}> ~ 2GeV/c)
 - Beam solid angle : x 3
 - 0.3 $\lambda_{\rm I}$ of T1 target : x 0.4
 - Signal yield ~200 events / 3 years.
 - BG could be large due to lower K_L energy.

Summary

- High-acceptance detector is crucial.
- 15m-long side-calorimeter increases the signal yield by factor of 3.8.
- ~900 signals/3 years with 2×10^{14} ppp at B-line.

- Further study needed for precise estimation.
 - Optimization for detector size, beam size.
 - Splashed particles.
 - BG