

Issues on Neutral Beam from B-line (10 slides)

Takeshi K. Komatsubara (KEK-IPNS)

4 August 2004 J-PARC NP04 workshop @Tokai "RICOTTI"

why B-line	??
------------	----

In the original layout (July 1999):

- two primary lines
- secondary channels by T1, T2 (for A) and TX (for B) targets.
- KL channel was at B-line:
 - 50GeV protons, 10 degree (high K_L momentum: 1-8 GeV/c).
 - Parameters would be optimized by K_L^0 experimentalists.

- 30 GeV protons, one primary line
- K1.8, K1.1, KL from a single target (Aline, T1)
- 16 degree, 6m to the collimator, 20m to the entrance.
 - constraints
 - not by experimental conditions.
 - little room for extention
 nor further modification

not optimized for high-precision measurement in the future

high energy Neutral Beam

50GeV protons, smaller extraction angle

• pros:

- larger K_L^0 flux, smaller n/ K_L^0
- boosted \rightarrow larger acceptance
- lower γ inefficiencies
- cons:
 - pencil beamline: collimation of high-energy particles
 - long decay-region/fiducial-volume
 - large, segmented detector
 - hyperons survive \rightarrow backgrounds ($\Lambda \rightarrow \pi^0 n$, ..) long beamline to reduce them ($c\tau_{\Lambda}=7.89$ cm)

Initial studies in E.Tanaka(Osaka)'s master thesis

target yield:

- $1.0\lambda_I$ length, 0.6cm $^{\phi}$ cylinder
- <u>Pt Ni Al Be</u>
- \implies n/ K_L^0 is minimum at 4-6 degree.

low energy neutrons from heavy materials, but are below π^0 threshold (800 MeV/c)

Figure 3.1: These momentum distributions of gamma(left), neutron(center), $K_L(right)$ with no absorber.

Figure 3.2: The momentum distributions of gamma(left), neutron(center), K_L (right) with a 0.75 λ_I long Be and a 9 X₀ long Pb absorber.

proton flux we really need, beamline length, ... should be determined by detector simulations.

neutral beamline:

- Be absorber $(0.75\lambda_I)$, Pb converter $(9X_0)$ $\implies n/K_L^0$ imporved by 2
- 50m beam (reduce hyperons)

B-line Facilities (to be requested as Phase-2)

1. Switching Magnet in SwitchYard

- ElectroStatic Septum + Lambertson Septum magnet (Fe-sheet)
 - beam loss of 2% by this scheme
 - not much later than the time high-intensity beam comes continuously.

2. Beam Transportation to the Hall

- magnets (+ their Power Supply)
 - get un-used magnets from outside (to reduce cost) ?

3. Target X

- production target for pencil beamline
 - Water-cooled Rotating Disk (for T1):
 viewing from non-zero extraction angle,
 this is not a small homogeneous target.
 - conventional one: how can we cool it ?
 (would limit the proton flux ??)

4. Beam dump

- stop the beam in a limited space
 - where ? (immediately downstream of the target)
 - how ? (small beam spot)
 - avoid being a source of accidentals into the detector

<u>5. and ...</u>

- concrete/Fe shield (droven into the ground) for radiation protect
- "load" of the target, dump, detector to the floor
- water, electricity, ...
- extend the Hall (to store the beamline and detector).