Penta-quark search via (π^-, K^-) reaction

K. Miwa (Kyoto Univ.)

E522 Collaboration

Kyoto Univ. K. Imai, N. Saito, H. Funahashi, C. J. Yoon, <u>K. Miwa</u>, Y. Fukao, H. Okada, K. Aoki, K. Taketani, M. Hayata, K. Shoji

KEK M. Ieiri, H. Takahashi

Gifu Univ. K. Nakazawa, T. Hibi, H. Nishikawa

Osaka Univ. T. Hayakawa

Osaka City Univ. K. Yamamoto

Pusan Univ. J. K. Ahn, S. J. Kim, B. H. Choi

Outline

✓ Introduction

✓ Experiment

✓ Analysis and preliminary result

✓ Summary

Introduction

- Report on Penta-quark Θ^+
 - Spring-8/LEPS, DIANA, CLAS, SAPHIR.....

Exciting field to study from theoretical and experimental aspect

- Photo-production, High energy experiment
 - Several groups report about penta-quark
- Mesonic production
 - DIANA (K⁺ beam and Xe bubble chamber)
- Width, Spin, Paritynot determined

Need more statistics

- We propose K⁺(KEK-PS E559) and π^- (E522) beam experiment. Confirmation of Θ^+

Cross section with π^- reaction

Possible (π^-, K^-) Reactions

KEK-PS E522

- KEK-PS K2 beam line
- Objects
 - H-dibaryon resonance search via (K^-, K^+) reaction
 - Kaonic Nuclei search via (K⁻,p) reaction

✓ Θ^+ search via (π^-, K^-) reaction

P _{beam} (GeV/c)	target	π⁻ beam	(π^{-}, K^{-}) event	comment
1.9	Scifi	2.9×10^{9}	17×10^{3}	Scifi two times thicker
1.9	CH ₂	4.2×10^{9}	14×10^{3}	
1.95	CH ₂	7.4×10^{9}	40×10^{3}	
1.9, 1.95	Carbon			Contribution of Carbon
1.9, 1.95 π^+	CH ₂		(π^+, K^+) reaction	To check Σ^+

Analysis of scattered particle

- Strait tracking
 - Bending point
 - Decay reject
 - Consistency of tracks between upstream and down stream of Manget
- Use Runge-Kutta method

Simulation of missing mass resolution

- GEANT simulation
 - Chamber resolution
 - Generate at random position inside the target
 - Include energy deposit (and decay)
 - $-\Delta p_{Beam} = 8.6 MeV/c$
- For Θ^+ case, $\sigma=5.94 MeV/c^2$
 - − $P_{K}^{-} \sim = 0.85 \text{GeV/c} \rightarrow \text{large bending angle}$

Missing mass spectrum of (π^+, K^+) reaction

✓ Inverse reaction of (π^-, K^-)

 \checkmark Observe Σ^+ peak

Missing mass analysis of (π^-, K^-) reaction

- Cut
 - Scattered particle K⁻
 - Beam particle -- π^-
 - Chi-square of runge-kutta tracking
 - Chi-square of beam tracking
 - Vertex position
 - Distance at vertex

Missing mass spectrum at 1.95GeV/c

- Obtained missing mass spectrum
- We did not apply any strict cut
- There is structure around 1.53GeV/c²
 - Statistical fluctuation?
- We need study of background

Spectrum with strict cut

We need reasonable cut to increase S/N ratio. Our study is still underway.

Comparison with Carbon data

- Carbon target
 - Thickness 5cm
 - Density 1.78g/cm³
- Beam counts
 - $CH_2 7.4*10^9$
 - Carbon 8.5*10⁸
- Normalize with beam counts and target number $\rightarrow 8.4$
- N(proton)=9175
- N(Carbon)=14137
- N(p):N(C) = 2:3

Upper limit estimation of cross section

\checkmark	π ⁻ p	$K^{-}(K^{+}n/pK^{0})$)	σ ~ 26.2μb	$@p_{th} = 1.50 \text{ GeV}$	√/c	
\checkmark	π⁻p	$\phi n K^-K^+n$		$\sigma = 30.0 + -8.0 \ \mu b$	$@p_{th} = 1.56 \text{ GeV}$	V/c	
\checkmark	π⁻p	$\Lambda(1520)K^0$	K⁻pK ⁰	$\sigma = 20.8 + -5.0 \ \mu b$	$@p_{th} = 1.68 \text{ GeV}$	V/c	
Sum of background cross section = 77µb Num of Θ < 190 (but depend on back ground) Contribution from proton(background) 9175 $\frac{N(peak)}{N(B.G)} \approx \frac{\sigma(peak)}{\sigma(B.G)}$							
					$\frac{77}{9175} \times 190 \approx 1.6\mu\text{b}$	preliminary	

$$\frac{d\sigma}{d\Omega} = \frac{N_{\odot} \times Cor(track) \times Cor(decay) \times Cor(Analysis) \times Cor(DAQ)}{N_{Bean} \times N_{Target}}$$

✓ Eff(track) \geq 0.75 ✓Eff(analysis)≥0.56 ✓ Eff(Decay)=0.57

 $\frac{d\sigma}{d\Omega} \approx 0.2 \,\mu \text{b/sr}$ Assuming s-wave, about 10% of K⁻ go to spectrometer $\rightarrow \sigma \sim 2\mu b$

Very preliminary

Theoretical calculation

Cross section for $\pi^- p = K^- \Theta^+$

Summary

- We carried out E522 experiment to search Θ⁺ via (π⁻,K⁻) reaction at KEK-PS K2 beam line.
- We used 1.95GeV/c π^- beam and CH₂ target.
- We obtained the missing mass resolution for Θ^+ to be 5.9MeV.
- In the missing mass spectrum of (π^-, K^-) reaction, there is enhancement around 1.53GeV/c² but not significant.
- Even if this enhancement is statistical fluctuation, we can estimate upper limit of cross section, and obtained about 2µb assuming K⁻ is scattered with s-wave.